Check for updates

OPEN ACCESS

EDITED BY Zheng Xiang, Liaoning University, China

REVIEWED BY Xingbin Yin, Beijing University of Chinese Medicine, China Zijia Zhang, Shanghai University of Traditional Chinese Medicine, China Changfu Wang, Guangdong Pharmaceutical University, China

*CORRESPONDENCE Haixue Kuang, hxkuang@hljucm.net

SPECIALTY SECTION This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

RECEIVED 13 October 2022 ACCEPTED 15 November 2022 PUBLISHED 30 November 2022

CITATION

Wang M, Wang S, Hu W, Wang Z, Yang B and Kuang H (2022), *Asparagus cochinchinensis*: A review of its botany, traditional uses, phytochemistry, pharmacology, and applications. *Front. Pharmacol.* 13:1068858. doi: 10.3389/fphar.2022.1068858

COPYRIGHT

© 2022 Wang, Wang, Hu, Wang, Yang and Kuang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Asparagus cochinchinensis: A review of its botany, traditional uses, phytochemistry, pharmacology, and applications

Meng Wang, Shuang Wang, Wenjing Hu, Zhibin Wang, Bingyou Yang and Haixue Kuang*

Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China

Asparagus cochinchinensis (Lour.) Merr. (A. cochinchinensis) is a traditional herbal medicine that is used to treat constipation, fever, pneumonia, stomachache, tracheitis, rhinitis, cataract, acne, urticaria. More than 90 compounds have been identified from different structural types in *A. cochinchinensis*, including steroidal saponins, C₂₁-steroides, lignans, polysaccharides, amino acids, etc. These bioactive ingredients make *A. cochinchinensis* remarkable for its pharmacological effects on anti-asthma, anti-inflammatory, anti-oxidation, anti-tumor, improving Alzheimer's disease, neuroprotection, gut health-promoting and so on. Moreover, *A. cochinchinensis* also plays an important role in food, health product, cosmetic, and other fields. This review focused on the research publications of *A. cochinchinensis* and aimed to summarize the advances in the botany, traditional uses, phytochemistry, pharmacology, and applications which will provide reference for the further studies and applications of *A. cochinchinensis*.

KEYWORDS

Asparagus cochinchinensis (Lour.) Merr, traditional uses, phytochemistry, pharmacology, applications

Introduction

A. cochinchinensis is belonging to the genus *Asparagus* in the family *Liliaceae*, it is widely distributed in temperate and tropical regions, including China, Japan, Korea, and Vietnam. (Kubota et al., 2012; Pegiou et al., 2019; Pahwa et al., 2022). *A. cochinchinensis* is one of the most frequently used traditional herbal medicines, with documented cases of its clinical therapeutic effect in many countries. (Sheng., 2022a; Wong et al., 2022). *A. cochinchinensis* first appeared as a traditional Chinese medicine (TCM) in the earliest Chinese medicinal classic work Shennong's Classic of Materia Medica (written more than 2000 years ago during the Han Dynasty), it has a long history of medicinal use and its medicinal value has been proved by clinical experience. It was included in the Pharmacopoeia of the People's Republic of China 1977 edition as a clinical TCM in

common use for the first time, and was continuously included until the latest 2020 edition. Dried roots are the main medicinal parts of A. cochinchinensis, it has been commonly used either alone or in combination with other herbal medicines to treat asthma, cough, constipation, thrombosis and inflammatory disease in China for centuries. Many classic formulas containing A. cochinchinensis have been widely used in clinic and have made important contributions to the health of people in China and other traditional medicinal systems in Asia. In addition to its medicinal value, A. cochinchinensis has various commercial applications in health products, food, and cosmetics (Safriani et al., 2022). It is commonly used as a food or nutritional supplement (Siand et al., 2015), cosmetics with whitening and anti-aging effects, and even used as a raw material for fermentation and winemaking (Kim et al., 2017; Topolska et al., 2021). Therefore, its huge potential and broad development prospects are worth exploring.

In the past few decades, A. cochinchinensis has attracted widespread attention as an important herbal medicine. Significant progress on isolation and identification of active constituents in A. cochinchinensis have been made in relevant researches. So far, more than 90 components have been isolated and identified. They mainly include steroidal saponins, C₂₁-steroids, lignans, polysaccharides, and amino acids. At present, A. cochinchinensis has a variety of pharmacological effects and has curative effects in the treatment of asthma, tumor, Alzheimer's disease, gut diseases, inflammatory diseases (Lee et al., 2009; Lei et al., 2016; Choi et al., 2019; Zhang R. S. et al., 2021). Besides that, medicinal prescription research also has revealed that it functions synergistically in combination with various herbal medicines (Weiying et al., 2006; Jung et al., 2014). With the indepth exploration of TCM the exploitation and utilization of traditional herbal medicine in the prevention and treatment of various diseases are steadily increasing.

With the current scientific and technological advances and the increasing international recognition of traditional herbal medicine in recent years, research on A. cochinchinensis has made significant progress. However, to the best of our knowledge, there is no review on A. cochinchinensis. It is particularly important and necessary to collate a review on A. cochinchinensis progress in recent years. This is the first review on up to date of A. cochinchinensis research developments in the fields of botany, traditional uses, phytochemistry, pharmacology, and applications. It provides an accurate overview of A. cochinchinensis research and identifies deficiencies in present studies, proposing further research targets. The authors expect this review to encourage further research into the pharmacological effects and mechanisms associated with A. cochinchinensis therapeutic effects and to provide a broader vision and new inspiration for research in current and potential applications of A. cochinchinensis.

Botany

A. cochinchinensis is a climbing perennial plant, which has the structural characteristics of pale green stalks, sickle-shaped leaves, pale green axillary flowers, red fruits, and the branches angular or narrowly winged. It usually grows on slopes, roadsides, underwoods, valleys, or wastelands, below 1750 m A. cochinchinensis is usually harvested in autumn and winter, cleaned silt, removed fibrous root, retained tuberous root, boiled in boiling water for 15 min, then peeled and cored, further dried to obtain the medicinal part of A. cochinchinensis. According to the online records of China's flora (http://www.cn-flora. ac.cn/index.html), the medicinal part of A. cochinchinensis is fusiform, with a swelling in the middle or near the end, which is 3-5 cm long and 1-2 cm thick. A. cochinchinensis's stem is smooth, often curved or twisted, up to 1-2 m long. A. cochinchinensis's leafy branches are usually clustered every 3, which are flat or slightly acute triangular due to the keel shape of the midvein, slightly falcate, 0.5-8 cm long, and 1-2 mm wide. Its inflorescence usually has two axillary flowers with alternate petals. The pedicel is 2-6 mm long. The joint is generally located in the middle, the perianth is 2.5-3 mm long, and the female flowers are similar in size to the male flowers. The flowering and fruiting period is generally from May to October. When the fruit matures, it becomes red, with a diameter of 6-7 mm, with only one seed per fruit, as shown in Figure 1.

Traditional uses

A. cochinchinensis has a long history of ethnopharmacological use and is characterized by bitter in taste and cold in nature. Since ancient times, researchers continuously explore and exploited TCM practices (Zhang X. et al., 2021; Wang et al., 2021). Dating back more than 1700 years of history, A. cochinchinensis was first documented in Shennong's Classic of Materia Medica (Dong Han Dynasty, 25-220 A.D.), which is the earliest classic on TCM. Later, it was listed in many other well-known works on Chinese herb, including "Ming Yi Bie Lu" (Wei and Jin Dynasty, 220-420 A.D.), "Yao Xing Lun" (Tang Dynasty, 618-907 A.D.). In the folk culture, it is often used as a treatment cough, constipation, fever, pneumonia, stomachache, tracheitis, rhinitis, cataract, acne, urticaria and other diseases. In different countries, A. cochinchinensis has different therapeutic effects. It can be combined with other herb medicines to achieve a greater therapeutic effect. In Korea, extracts of formulations composed of A. cochinchinensis and other herbs were shown to have the effect of treating thrombosis (Chang et al., 2005; Lee et al., 2019). In China, the classic prescription composed of A. cochinchinensis (Qisheng pill) contains 114 chemical compounds were identified, including diosgenin, Methyl protodioscin, and ferroic acid, total saponin etc., which can inhibit the occurrence of inflammation, regulate intestinal dysfunction and improve the effect of Alzheimer disease (Xiong et al., 2022). At the same time, the herb formula water decoction composed of A. cochinchinensis can treatment of intestinal

diseases, especially alleviate allergic airway inflammation and treat asthma (Luo et al., 2020). This also reflects the different therapeutic effects of *A. cochinchinensis* in traditional use and the broad application prospects in the future. Therefore, its clinical efficacy and function still need to be further explored.

Phytochemistry

In the past few decades, *A. cochinchinensis* have been investigated from a phytochemical perspective. The literature indicates the presence of multiple chemical compounds, predominantly steroidal saponin, C_{21} -steroids, amino acids, lignan, and polysaccharides. To date, more than 90 compounds have been isolated and identified from *A. cochinchinensis*. These compounds are summarized in Tables 1 and Table 2, and their structures are shown in Figure 2, and Figure 3, and Figure 4.

Steroidal saponins

Steroidal saponins are the major chemical components in *A. cochinchinensis* (Lee et al., 2015). Thus far, 71 steroidal saponins (1–71) have been isolated from *A. cochinchinensis* in Table 2. Steroid saponins are mainly composed of steroidal saponins and sugar condensation. They are classified into spirostanol saponins, isosprirostanol saponins, pseudospirostanol saponins and furostanol saponins based on the aglycone component differences. Aglycones are composed of six rings, of which the rutile rings are

usually connected in a spiroketal form. The sugar moieties in the ordinary steroidal saponins are attached to the hydroxyl groups at C_3 . In a word, the structural diversity of different compounds is more reflected in the kind, length of each monosaccharide, the type of glycoside bond at the C_3 position, and the position of the substituent.

C_{21} -steroides

 C_{21} -steroides are steroid derivatives with 21 carbon atoms and are one of the key compounds in *A. cochinchinensis*. C_{21} steroids are mostly hydroxyl derivatives with pregnane or its isomers as the basic skeleton. According to the skeleton type, they can be divided into four types, of which 72–79 (Jian et al., 2013; Liu et al., 2021; Zhu et al., 2021) are typical C_{21} -steroides in Figure 3. In addition, there are many hydroxyl and carbonyl groups on the C_{21} -steroid mother nucleus, and most of the carbonyl groups are at C_{20} .

Amino acids

Four kinds of amino acids were isolated from *A. cochinchinensis* 80–83 (Choi et al., 2019), and their structures are shown in Figure 4. Amino acids are compounds containing both amino and carboxyl groups. In terms of their structure, amino acids are derivatives of carboxylic acid molecules in which amino groups replace the hydrogen in the alkyl group. According to the relative number of amino and carboxyl groups in amino acid molecules, amino acids can be divided into neutral, acidic and basic.

TABLE 1 Chemical compounds isolated from A. cochinchinensis.

Number	Chemical composition	Extraction solvent	Molecular formula	Molecular weight	Reference
Steroidal Saj	ponin				
1	Dioscin	MeOH	$C_{45}H_{72}O_{16}$	869.0436	Lee et al. (2015)
2	Prosapogenin B	70% EtOH	$C_{39}H_{62}O_{12}$	722.9024	Liu et al. (2021)
3	$\begin{array}{l} (23R,\ 24R,\ 25S) \text{-spirost-5-ene-3}\beta, 23, 24-triol-3-O-\alpha-L-rhamnopyranosyl-\\ (1\rightarrow 2)-[\alpha-L-rhamnopyranosyl-(1\rightarrow 4)]-\beta-D-glucopyranoside \end{array}$	70% EtOH	$C_{45}H_{72}O_{18}$	901.0424	Liu et al. (2021)
4	$\label{eq:c4S,25S} $$ -spirost-5-ene-3\beta,24-diol-3-O-\alpha-L-rhamnopyranosyl-(1\rightarrow2)- $$ [\alpha-L-rhamnopyranosyl-(1\rightarrow4)]-\beta-D-glucopyranoside $$ -spirostantial statement of the second $	70% EtOH	$C_{45}H_{72}O_{17}$	885.0430	Liu et al. (2021)
5	Methylprotodioscin	МеОН	$C_{52}H_{86}O_{22}$	1063.2260	Liang et al. (1988)
6	(25S)-26-O-β-D-glucopyranosyl-5β-furost-20(22)-en-3β,15β,26-triol-3- O-[α-L-rhamnopyranosyl-(1-4)]-β-D-glucopyranoside	75% EtOH	$C_{45}H_{74}O_{17}$	887.0589	Shen et al. (2011)
7	Aspacochioside C	75% EtOH; Water	$C_{45}H_{75}O_{17}$	888.0705	Shen et al., 2011
					Kim et al. (2021)
8	3-O-[α -L-rhamnopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl]- (25S) –5 β -spirostan-3 β -ol	70% MeOH	$C_{39}H_{64}O_{12}$	724.9183	Zhu et al. (2021)
9	Asparacoside	МеОН	$C_{49}H_{80}O_{21}$	1005.1469	Zhang et al. (2004)
10	Nicotianoside B	70% MeOH	$C_{39}H_{64}O_{12}$	724.9183	Zhu et al. (2021)
11	Immunoside	70% MeOH	-	-	Zhu et al. (2021)
12	Shatavarin IV	70% MeOH	-	-	Zhu et al. (2021)
13	$(25S)-5\beta-spirostan-3\beta-ol-3-O-\alpha-L-rhamnopyranoside$	70% MeOH	$C_{33}H_{54}O_7$	562.7777	Zhu et al. (2014)
14	$(25S)-5\beta-spirostan-3\beta-ol-3-O-\beta-D-glucopyranoside$	70% MeOH	$C_{33}H_{54}O_8$	578.7771	Zhu et al. (2014)
15	(23S,25R)-23-hydroxyspirost-5-en-3β-yl-O-α-L-rhamnopyranosyl- (1→4)-β-D-glucopyranoside	70% EtOH	$C_{39}H_{62}O_{13}$	738.9018	Liu et al. (2021)
16	Dioseptemloside F	70% EtOH	$C_{39}H_{62}O_{13}$	738.9018	Liu et al. (2021)
17	Pseudoprotoneodioscin	75%EtOH; Water	$C_{51}H_{82}O_{21}\\$	1031.1842	Shen et al., 2011
18	$\begin{array}{l} 26\text{-}O\text{-}\beta\text{-}D\text{-}glucopyranosyl\text{-}(25R)\text{-}furost\text{-}5\text{-}ene\text{-}3\beta\text{,}22\alpha\text{,}26\text{-}triol} 3\text{-}O\text{-}\\ (1-4)\text{-}\beta\text{-}D\text{-}glucopyranosyl\text{-}\alpha\text{-}L\text{-}rhamnopyranosyl\text{-}(1-2)\text{-}[\alpha\text{-}L\text{-}\\ rhamnopyranosyl\text{-}(1-4)]\text{-}\beta\text{-}D\text{-}glucopyranoside} \end{array}$	Water	$C_{57}H_{94}O_{27}$	1211.3401	Zhang et al. (2021b)
19	Protodioscin	Water; 90% EtOH	$C_{51}H_{84}O_{22}$	1049.1995	Kim et al. (2021)
					Zhang et al. (2021b)
20	15-hydroxypseudoprotodioscin	Water	$C_{51}H_{82}O_{22}$	1047.1836	Kim et al. (2021)
21	Dioscoreside H	90% EtOH	$C_{51}H_{82}O_{22}$	1047.1836	Zhang et al. (2021b)
22	Pseudoprotodioscin	Water	$C_{51}H_{82}O_{21}$	1031.1842	Liang et al. (1988)
23	$\begin{array}{l} (25R)-26-O-\beta-D-glucopyranosyl-3\beta,20\alpha,26-trihydroxyfurostan-5,22-\\ diene-3-O-\alpha-L-rhamnopyranosyl-(1\rightarrow2)-[\alpha-L-rhamnopyranosyl-(1\rightarrow4)]-O-\beta-D-glucopyranoside \end{array}$	90% EtOH	-	-	Zhang et al. (2021b)
24	3-O- α -L-rhamnopyranosyl(1 \rightarrow 4)-[β -D-glucopyranosyl(1 \rightarrow 2)]- β -D-glucopyranosyl-26-O- β -D-glucopyranosyl-(25R)-5 β -furostane- 3 β ,22 α ,26-triol	75% EtOH	$C_{51}H_{86}O_{23}$	1067.2147	Jian et al. (2013)
25	3-O- β -D-xylopyranosyl(1 \rightarrow 4)-[β -D-glucopyranosyl(1 \rightarrow 2)]- β -D-glucopyranosyl-26-O- β -D-glucopyranosyl-(258)-5 β -furostane- 3 β ,22 α ,26-triol	75% EtOH	$C_{50}H_{84}O_{23}$	1053.1882	Jian et al. (2013)
26	3-O-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl-26-O-β-D- glucopyranosyl-(25S)-5β-furostane-3β,22α,26-triol	75% EtOH	$C_{45}H_{76}O_{19}$	921.0735	Jian et al. (2013)
27	3-O-α-L-rhamnopyranosyl (1→4)-[β-D-xylopyranosyl(1→2)]-β-D- glucopyranosyl-26-O-β-D-glucopyranosyl-(25S)-5β-furostane- 3β,22α,26-triol	60% EtOH	$C_{50}H_{84}O_{22}$	1037.1888	Pang et al. (2021)

(Continued on following page)

TABLE 1 (Continued) Chemical compounds isolated from A. cochinchinensis.

Number	Chemical composition	Extraction solvent	Molecular formula	Molecular weight	Reference
28	(25S)-26-O-β-D-glucopyranosyl-5β-furostan-3β,22α,26-triol-3-O-α-L- rhamnopyranosyl-(1→4)-β-D-glucopyranoside	70% MeOH	$C_{45}H_{76}O_{18}$	905.0741	Zhu et al. (2014)
29	(258)-26-O- β -D-glucopyranosyl-5 β -furstan-3 β , 22 α , 26-triol-3-O- β -D-glucopyranoside	70% MeOH	$C_{39}H_{66}O_{14}$	758.9329	Zhu et al. (2014)
30	$(25S)\text{-}5\beta\text{-}12\text{-}one\text{-}spirost\text{-}3\beta\text{-}ol\text{-}3\text{-}O\text{-}\beta\text{-}D\text{-}glucopyranoside}$	60% EtOH	$C_{33}H_{52}O_9$	592.7606	Pang et al. (2021)
31	26-O- β -D-glucopyranosyl-(25S)-5 β -12-one-furost-3 β ,26-diol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-xylcopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	60% EtOH	$C_{50}H_{82}O_{23}$	1051.1723	Pang et al. (2021)
32	(25S)-26-O- β -D-glucopyranosyl-5 β -furostan-3 β ,22 α ,26-triol-12-one-3-O- β -D-glucopyranoside	60% EtOH	$C_{39}H_{64}O_{15}$	772.9165	Pang et al. (2021) Zhu et al. (2014)
33	26-O- β -D-glucopyranosyl-(25S)- $\Delta^{5(6)}$ -12-one-furost-3 β ,26-diol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-xylcopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	60% EtOH	$C_{50}H_{80}O_{23}$	1049.1564	Pang et al. (2021)
34	26-O- β -D-glucopyranosyl-(25S)- $\Delta^{5(6)}$ -12-one-furost-3 β ,26-diol-3-O-a-L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	60% EtOH	$C_{51}H_{82}O_{23}$	1063.1830	Pang et al. (2021)
35	(25S)-26-Ο-β-D-glucopyranosyl-22α-methoxy-5β-furostan-3β,26-diol- 12-one-3-Ο-β-D-glucopyranoside	70% MeOH	$C_{40}H_{66}O_{15}$	786.9430	Zhu et al. (2014)
36	26-O- β -D-glucopyranosyl-(25S)-5 β -furost-3 β ,12 α ,26-triol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	60% EtOH	$C_{39}H_{66}O_{15}$	774.9323	Pang et al. (2021)
37	Officinalisnin II	60% EtOH	-	-	Pang et al. (2021)
38	(25S)-officinalisnin-I	60% EtOH	$C_{45}H_{76}O_{19}$	921.0735	Pang et al. (2021)
39	(25S)-26-O-β-D-glucopyranosyl-5β-furostan-3β,22α,26-triol	70% MeOH	C33H56O9	596.7923	Zhu et al. (2014)
40	Pallidifloside I	60% EtOH	$C_{50}H_{82}O_{22}$	1035.1729	Pang et al. (2021)
41	3-O-[bis-α-L-rhamnopyranosyl-(1→2and1→4)-β-D-glucopyranosyl- 25R-furost-5-ene-3β,22α,26-triol]	70% EtOH	$C_{45}H_{74}O_{17}$	887.0589	Liu et al. (2021)
42	$\label{eq:a-L-rhamnopyranosyl-(1\to4)} $$ -D-glucopyranosyl]-26-O-[\beta-D-glucopyranosyl]-(25S)-5\beta-furost-20(22)-en-3\beta,26-diol$	EtOH	$C_{45}H_{74}O_{17}$	887.0589	Shi et al. (2004)
43	3-O-β-D-xylopyranosyl(1→4)-[β-D-glucopyranosyl(1→2)]-β-D- glucopyranosyl-26-O-β-D-glucopyranosyl-(25R)-5β-furostane- 3β,22α,26-triol	75% EtOH	-	-	Jian et al. (2013)
44	3-O-[{a-L-rhamnopyranosyl-(1 \rightarrow 4)} { β -D-glucopyranosyl}]-26-O-[β -D-glucopyranosyl]-(25S)-5 β -furostane-3 β ,22 α ,26-triol	Water; EtOH	$C_{45}H_{76}O_{18}$	905.0741	Shi et al. (2004)
45	Chamaedroside E	Water	$C_{45}H_{76}O_{19}$	921.0735	Kim et al. (2021)
46	Furospirost-5-ene-3 $\beta,6\alpha,23\alpha$ -triol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside	70% MeOH	$C_{40}H_{64}O_{14}$	768.9278	Liu et al. (2021)
47	16 β ,22,23-trihydroxycholest-5-ene-3 β -yl-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside	70% MeOH	$C_{39}H_{66}O_{13}$	742.9335	Liu et al. (2021)
48	$\begin{array}{l} (24S,25R)\mbox{-spirost-5-ene-3\beta,} 24\mbox{-diol-3-O-} \alpha\mbox{-L-rhamnopyranosyl-} (1 \rightarrow 2)\mbox{-} \\ [\alpha\mbox{-L-rhamnopyranosyl-} (1 \rightarrow 4)]\mbox{-} \beta\mbox{-} D\mbox{-} glucopyranoside \end{array}$	70% MeOH	$C_{45}H_{72}O_{17}$	884.0430	Liu et al. (2021)
49	(24S,25S)-spirost-5-ene-3 β ,24-diol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside	70% EtOH	$C_{39}H_{62}O_{13}$	738.9018	Liu et al. (2021)
50	(238,24R,58)–23,24-dihydroxyspirost-5-en-3 β -yl-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside	70% EtOH	$C_{39}H_{62}O_{14}$	754.9012	Liu et al. (2021)
51	$Smilagenin-3-O-\alpha-L-rhamnopyranosyl-(1{\rightarrow}4)-\beta-D-glucopyranoside$	70% EtOH	$C_{39}H_{64}O_{12}$	724.9183	Liu et al. (2021)
52	$\label{eq:2.1} \begin{array}{l} 3\text{-}O-\{[\beta\text{-}D\text{-}glucopyranosyl-(1{\rightarrow}2)]-[\alpha\text{-}L\text{-}rhamnopyranosyl-(1{\rightarrow}4)]-\beta\text{-}D-glucopyranosyl}\} \ -(25R)-5\beta\text{-}spirostan-3\beta\text{-}ol \end{array}$	70% EtOH	$C_{45}H_{74}O_{17}$	887.0589	Liu et al. (2021)
53		70% EtOH	-	-	Liu et al. (2021)

(Continued on following page)

TABLE 1 (Continued) Chemical compounds isolated from A. cochinchinensis.

Number	Chemical composition	Extraction solvent	Molecular formula	Molecular weight	Reference
	(25R)-26-[(β -D-glucopyranosyl) oxy]-22 α -methoxyfurost-5-en-3 β -yl-O- α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside				
54	Pseuprotodioscin	70% EtOH	-	-	Liu et al. (2021)
55	Dioscin F	70% EtOH	$C_{39}H_{60}O_{13}$	736.8859	Liu et al. (2021)
56	Dioscin E	70% EtOH	$C_{39}H_{62}O_{12}$	722.9024	Liu et al. (2021)
57	3-O-[α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl]-26-O-β-D- glucopyranosyl–20, 22-seco-25R-furoene-20, 22-dione-3β, 26-diol	70% EtOH	$C_{45}H_{74}O_{19}$	919.0577	Liu et al. (2021)
58	(23S, 24R, 25R)-spirost-5-ene-3 β ,23,24-triol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)- β -D-glucopyranoside	70% EtOH	$C_{45}H_{72}O_{18}$	901.0424	Liu et al. (2021)
59	(23R, 25S)-spirost-5-ene-3 β , 23-diol-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- [α -L-rhamnopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside	70% EtOH	$C_{45}H_{72}O_{17}$	885.0430	Liu et al. (2021)
60	Dumoside	70% EtOH	$C_{40}H_{62}O_{16}$	798.9107	Liu et al. (2021)
61	Asparacosins A	МеОН	$C_{27}H_{40}O_5$	444.6035	Zhang et al. (2004)
62	Asparacosins B	МеОН	$C_{29}H_{46}O_6$	490.6719	Zhang et al. (2004)
63	26-O-β-D-glucopyranosyl-(25R)-5β-furost-3β,26-diol-3-O-α-L- rhamnopyranosyl-(1→2)-[β-D-xylcopyranosyl-(1→4)]-β-D- glucopyranoside	60% EtOH	$C_{50}H_{84}O_{22}$	1037.1888	Pang et al. (2021)
64	25-epi-officinalisnin II	60% EtOH	-	-	Pang et al. (2021)
65	Disporoside C	60% EtOH	$C_{45}H_{76}O_{19}$	921.0735	Pang et al. (2021)
66	26-O-β-D-glucopyranosyl-(25R)-5β-furost-3β,26-diol-3-O-α-L- rhamnopyranosyl-(1 \rightarrow 2)-[β-D-xylcopyranosyl-(1 \rightarrow 4)]-[α-L- rhamnopyranosyl-(1 \rightarrow 6)]-β-D-glucopyranoside	60% EtOH	$C_{56}H_{94}O_{27}$	1199.3294	Pang et al. (2021)
67	26-O-β-D-glucopyranosyl-(25R)-5β-furost-3β,26-diol-3-O-α-L-rhamnopyranosyl-(1 \rightarrow 2)-[α-L-rhamnopyranosyl-(1 \rightarrow 4)]-[α-L-rhamnopyranosyl-(1 \rightarrow 6)]-β-D-glucopyranoside	60% EtOH	$C_{57}H_{96}O_{27}$	1213.3560	Pang et al. (2021)
68	$\label{eq:2.1} \begin{array}{l} 3-O-[\{\alpha\text{-}L\text{-}rhamnopyranosyl-(1\rightarrow 4)\}\;\{\beta\text{-}D\text{-}glucopyranosyl\}]-26-O-[\beta\text{-}D\text{-}glucopyranosyl}]-22\alpha\text{-}methoxy-(25S)-5\beta\text{-}furostane-3\beta,26-diol \end{array}$	EtOH	$C_{46}H_{79}O_{18}$	904.1131	Shi et al. (2004)
69	Protoneodioscin	60% EtOH	-	-	Pang et al. (2021)
70	3-O-[a-L-rhamnopyranosyl-(1→4) β-D-glucopyranosyl]-26-O-(β-D- glucopyranosyl) -(25R)-furosta-5,20-diene, -3β,26-diol	Water	-	-	Liang et al., 1988
					Liu et al. (2021)
71	5\$-pregn-20-ene-3,16-diol-22-one 3-O- α -L-rhmnopyranosyl-(1 $\!\rightarrow\!2)$ -\$-D-glucopyranoside	70% MeOH	$C_{34}H_{52}O_{12}$	652.7695	Zhu et al. (2021)
${\rm C}^{21} ext{-steroide}$					
72	3-O-β-D-xylopyranosyl(1→4)-[β-D-glucopyranosyl(1→2)]-β- Dglucopyranosyl-5β-pregna-16-ene-33β-ol-20-one	75% EtOH	$C_{38}H_{60}O_{16}$	772.8734	Jian et al. (2013)
73	3-О-а-L-rhamnopyranosyl (1 \rightarrow 4)- [β -D-glucopyranosyl (1 \rightarrow 2)]- β -D-glucopyranosyl-5 β -pregna-16-ene-3 β -ol-20-one	75% EtOH	$C_{33}H_{52}O_{12} \\$	640.7588	Jian et al. (2013)
74	3-O-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl-5β-pregna-16-ene-3β-ol-20-one	75% EtOH	$C_{33}H_{52}O_{12}$	640.7588	Jian et al. (2013)
75	(3β,5β)-pregn-16(17)-en-3-ol-20-one 3-O-α-L-rhmnopyranosyl-(1→4)- $\beta\text{-D-glucopyranoside}$	70% MeOH	$C_{33}H_{52}O_{11}$	624.7594	Zhu et al. (2021)
76	(3 β ,5 β)-pregn-16(17)-en-3-ol-20-one 3-O- α -L-rhmnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranoside	70% MeOH	$C_{33}H_{52}O_{11}$	624.7594	Zhu et al. (2021)
77	$(3\beta,5\beta)\text{-}pregn-16(17)\text{-}en-3\text{-}ol-20\text{-}one$ 3-O-a-L-arabinopyranosyl-(1 \rightarrow 4)- $\beta\text{-}D\text{-}glucopyranoside}$	70% MeOH	$C_{20}H_{50}O_{11}$	466.6040	Zhu et al. (2021)
78	(3 β ,5 β)-pregn-16(17)-en-3-ol-20-one 3-O- α -L-arabipyrannosyl-(1 \rightarrow 4)- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosid	70% MeOH	$C_{38}H_{60}O_{16}$	772.8734	Zhu et al. (2021)
79	3β-[(O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl)oxy]pregna-5,-16-dien-20-one	70% EtOH	$C_{33}H_{50}O_{11}$	622.7435	Liu et al. (2021)

(Continued on following page)

06

TABLE 1 (Continued) Chemical compounds isolated from A. cochinchinensis.

Number	Chemical composition	Extraction solvent	Molecular formula	Molecular weight	Reference
Amino acid					
80	Alanine	Water	$C_3H_7NO_2$	89.0932	Choi et al., 2019
81	Glycine	Water	$C_2H_5NO_2$	75.0666	Choi et al., 2019
82	Methionine	Water	$C_5H_{11}NO_2S$	149.2113	Choi et al., 2019
83	Tryptophan	Water	$C_{11}H_{12}N_2O_2$	204.2252	Choi et al., 2019
Lignan					
84	Iso-agatharesinol	70% EtOH	$C_{17}H_{18}O_4$	286.3224	Li et al. (2012)
85	Iso-agatharesinoside	70% EtOH	$C_{23}H_{28}O_9$	448.4630	Li et al. (2012)
Others					
86	1-[4-hydroxyphenoxy]-5-[3-methoxy-4-hydroxyphenyl] pent-2-en- 3-yne	МеОН	$C_{18}H_{16}O_4$	296.3172	Zhang et al. (2004)
87	Asparenydiol	МеОН	$C_{17}H_{13}O_3$	265.2839	Zhang et al. (2004)
88	3'-hydroxy-4'-methoxy-4'-dehydroxynyasol	МеОН	$C_{18}H_{18}O_3$	282.3337	Zhang et al. (2004)
89	Nyasol	МеОН	$C_{17}H_{16}O_2$	252.3077	Zhang et al. (2004)
90	3″-methoxynyasol	МеОН	$C_{17}H_{16}O_3$	268.3071	Zhang et al. (2004)
91	1,3-bis-di-p-hydroxyphenyl-4-penten-1-one	МеОН	$C_{17}H_{16}O_3$	268.3071	Zhang et al. (2004)
92	Trans-coniferyl alcohol	MeOH	$C_{10}H_{12}O_3$	180.2005	Zhang et al. (2004)
93	Acrylamide	Water	C_3H_5NO	71.0779	Shi et al. (2009)

Lignans

Lignans are a kind of natural compounds synthesized by the polymerization of two-molecular phenylpropanoid derivatives, most of which are free, and a few are glycosides bound to a sugar. At present, a small concentration of lignans 84–85 (Li et al., 2012) was identified from *A. cochinchinensis*. Compared with other compounds, lignans have less structure. Therefore, future efforts should be made to isolate and characterize lignans in *A. cochinchinensis*.

Polysaccharides

In recent years, plant polysaccharides have attracted high research interest due to their unique biological activity and natural origin, with great potential to protect human health. Many natural products are is rich in polysaccharide resources, especially medicinal plant polysaccharides, with long application history and broad development prospects. *A. cochinchinensis* polysaccharides are mainly comprised of Man, Rha, Glc, Gal, Ara, Xyl, Fru, GlcUA, and GalUA, as shown in Table 3.

Other compounds

In addition to the five major phytochemical compound classes mentioned above, other bioactive constituents have also been isolated from *A. cochinchinensis* (Zhang et al., 2004; Shi et al., 2009). These include 1-[4-hydroxyphenoxy]-5-[3-methoxy-4-hydroxyphenyl] pent-2-en-3-yne (86), asparenydiol (87),3'-hydroxy-4'-methoxy-4'dehydroxynyasol (88), Nyasol(89), 3"-methoxynyasol(90), 1,3-bis-di-p-hydroxyphenyl-4-penten-1-one(91), trans-coniferyl alcohol(92), Acrylamide(93). The above findings illustrate the wide chemical composition of *A. cochinchinensis*, which is of immense future research value.

Pharmacological activities

A. cochinchinensis exerts various pharmacological activities, including anti-asthma, anti-inflammation, anti-oxidant, antitumor, anti-depressant, neuroprotective, improve Alzheimer's disease and gut diseases. To illustrate the nature of the active

TABLE 2 The structures of steroidal saponins in A. cochinchinensis.

NO Structure

	Mother nucleus	R ₁	R ₂	R ₃	R ₄	R ₅
1	Ι	α-L-Rha $(1\rightarrow 2)$ -[α-L-Rha $(1\rightarrow 4)$]-β-D-Glc	Н	Н	Н	Н
2	Ι	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	Н
3	Ι	α -L-Rha (1 \rightarrow 2)-[α -L-Rha (1 \rightarrow 4)]- β -D-Glc	Н	Н	OH	OH
4	Ι	α -L-Rha (1 \rightarrow 2)-[α -L-Rha (1 \rightarrow 4)]- β -D-Glc	Н	Н	Н	OH
5	II	α-L-Rha (1→2)- [α-L-Rha (1→4)]-β-D-Glc	Н	Н	OCH ₃	β-D-Glc
6	III	α -L-Rha (1 \rightarrow 4)- β -D-Glc	OH	Н	Н	β-D-Glc
7	III	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	β-D-Glc
8	IV	α -L-Rha (1 \rightarrow 4)- β -D-Glc	Н	Н	Н	Н
9	IV	$\beta\text{-D-Glc}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Ara}(1{\rightarrow}4)]\text{-}[a\text{-L-Ara}(1{\rightarrow}6)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	Н
10	IV	α -L-Rha (1 \rightarrow 2)- β -D-Glc	Н	Н	Н	Н
11	IV	$\alpha\text{-L-Rha}(1 \rightarrow 2)\text{-}[\alpha\text{-L-Rha}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	Н
12	IV	β -D-Glc(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	Н	Н
13	IV	α-L-Rha	Н	Н	Н	Н
14	IV	β-D-Glc	Н	Н	Н	Н
15	V	α-L-Rha (1→4)-β-D-Glc	Н	Н	OH	Н
16	V	α -L-Rha (1 \rightarrow 4)- β -D-Glc	α-Η,β-ΟΗ	Н	Н	Н
17	VI	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\beta\text{-D-Glc}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	β-D-Glc
18	VII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\beta\text{-D-Glc}(1{\rightarrow}4)\text{-}\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
19	VII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
20	VIII	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	OH	Н	Н	β-D-Glc
21	VIII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
22	VIII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	β-D-Glc
23	IX	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	β-D-Glc
24	Х	β -D-Glc(1 \rightarrow 2)- β -D-Glc	Н	Н	OCH ₃	β-D-Glc
25	Х	α -L-Rha (1 \rightarrow 4)- β -D-Glc	Н	0	OH	β-D-Glc
26	Х	$\beta\text{-D-Glc}(1 \rightarrow 2)\text{-}[\alpha\text{-L-Rha}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
27	Х	$\beta\text{-}D\text{-}Xyl(1{\rightarrow}2)\text{-}[\alpha\text{-}L\text{-}Rha(1{\rightarrow}4)]\text{-}\beta\text{-}D\text{-}Glc$	Н	Н	OH	β-D-Glc
28	Х	α -L-Rha (1 \rightarrow 4)- β -D-Glc	Н	Н	OH	β-D-Glc
29	Х	β-D-Glc	Н	Н	OH	β-D-Glc
30	XI	β-D-Glc	Н	Н	Н	Н
31	XII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\beta\text{-D-Xyl}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
32	XII	β-D-Glc	Н	Н	Н	β-D-Glc
33	XIII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\beta\text{-D-Xyl}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
34	XIII	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\alpha\text{-L-Rha}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
35	XIII	β-D-Glc	Н	Н	OCH ₃	β-D-Glc
36	XIV	β-D-Glc	Н	OH	OH	β-D-Glc
37	XIV	$\beta\text{-D-Glc}(1 \rightarrow 2)\text{-}[\beta\text{-D-Xyl}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
38	XIV	β -D-Glc(1 \rightarrow 2)- β -D-Glc	Н	Н	OH	β-D-Glc
39	XIV	Н	Н	Н	OH	β-D-Glc
40	XV	$\alpha\text{-L-Rha}(1{\rightarrow}2)\text{-}[\beta\text{-D-Xyl}(1{\rightarrow}4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
41	XV	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	OH	β-D-Glc
42	XVI	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	β-D-Glc
43	XVII	β -D-Glc(1 \rightarrow 2)-[β -D-Xyl(1 \rightarrow 4)]- β -D-Glc	Н	OH	CH ₃	β-D-Glc
44	XVII	α -L-Rha(1 \rightarrow 4)- β -D-Glc	Н	OH	β-methyl	β-D-Glc
45	XVII	β -D-Glc(1 \rightarrow 4)- β -D-Glc	Н	OH	a-methyl	β-D-Glc
46	XVIII	α -L-Rha (1 \rightarrow 4)- β -D-Glc	OH	Н	OH	Н

(Continued on following page)

TABLE 2 (Continued)	The structures	of	steroidal	saponins	in .	Α.	cochinchinensis.
	1110 3010000103	U .	20010101010	Suporning			000111110111110110101

NO Structure

	Mother nucleus	R ₁	R ₂	R ₃	R ₄	R ₅
47	XIX	α-L-Rha (1→4)-β-D-Glc	Н	ОН	ОН	ОН
48	XX	$\alpha\text{-L-Rha}(1 \rightarrow 2)\text{-}[\alpha\text{-L-Rha}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	Н	OH
49	XXI	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	OH
50	XXI	α-L-Rha (1→4)-β-D-Glc	Н	Н	OH	OH
51	XXII	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	Н
52	XXII	β -D-Glc(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	Н	Н
53	XXIII	β -D-Glc(1 \rightarrow 4)- β -D-Glc	Н	Н	OCH_3	β-D-Glc
54	XXIV	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	Н	β-D-Glc
55	XXV	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	Н
56	XXVI	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	Н
57	XXVII	α-L-Rha (1→4)-β-D-Glc	Н	Н	Н	β-D-Glc
58	XXVIII	$\alpha\text{-L-Rha}(1 \rightarrow 2)\text{-}[\alpha\text{-L-Rha}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	OH
59	XXVIII	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	OH	Н
60	XXIX	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	Н	Н
61	XXX	OH	OH	Н	Н	Н
62	XXXI	Н	OH	Н	Н	Н
63	XXXII	$\alpha\text{-L-Rha}(1 \rightarrow 2)\text{-}[\beta\text{-D-Xyl}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
64	XXXII	$\beta\text{-D-Glc}(1 \rightarrow 2)\text{-}[\beta\text{-D-Xyl}(1 \rightarrow 4)]\text{-}\beta\text{-D-Glc}$	Н	Н	OH	β-D-Glc
65	XXXII	β -D-Glc(1 \rightarrow 2)- β -D-Glc	Н	Н	OH	β-D-Glc
66	XXXII	$\beta\text{-}D\text{-}Glc(1 \rightarrow 2)\text{-}[\beta\text{-}D\text{-}Xyl(1 \rightarrow 4)]\text{-}[\alpha\text{-}L\text{-}Rha(1 \rightarrow 6)]\text{-}\beta\text{-}D\text{-}Glc$	Н	Н	OH	β-D-Glc
67	XXXII	$\beta\text{-}D\text{-}Glc(1\rightarrow2)\text{-}[\alpha\text{-}L\text{-}Rha(1\rightarrow4)]\text{-}[\alpha\text{-}L\text{-}Rha(1\rightarrow6)]\text{-}\beta\text{-}D\text{-}Glc$	Н	Н	OH	β-D-Glc
68	XXXIII	α-L-Rha (1→4)-β-D-Glc	Н	OCH ₃	Н	β-D-Glc
69	XXXIV	α -L-Rha(1 \rightarrow 2)-[α -L-Rha(1 \rightarrow 4)]- β -D-Glc	Н	Н	OH	β-D-Glc
70	XXXV	α-L-Rha (1→4)-β-D-Glc	Н	Н	CH_3	β-D-Glc
71	XXXVI	$\alpha\text{-L-Rha}~(1{\rightarrow}2)\text{-}\beta\text{-D-Glc}$	Н	Н	Н	Н

compounds of *A. cochinchinensis*, the pharmacological effects and potential mechanisms of this plant on the basis of different types of extracts and compounds were summarized in Table 4. A simplified diagram of its pharmacological effects is presented in Figure 5.

Anti-asthma

Asthma is a common chronic and stubborn respiratory disease, clinically presenting with cough, chest tightness, wheezing, and shortness of breath (Papi et al., 2018). Nontimely treatment will lead to a series of secondary diseases, such as chronic obstructive pulmonary disease and heart failure, which can become life-threatening (Schoettler and Strek, 2020; Miller et al., 2021). At the same time, it also added a serious financial burden to the family (López-Tiro et al., 2022). Therefore, researchers found that the butanol extract of *A. cochinchinensis* roots, when fermented with Weissella cibaria (BAfW), was found to inhibit the development of asthma development through various potential mechanisms. Choi et al., 2018 alterations in key parameters were measured in ovalbumin (OVA)-challenged Balb/c mice treated with different BAfW dose regimens at three different time points. The results show that when the dosage of A. cochinchinensis fermentation extract was 500 mg, the number of immune cells, OVA-specific immunoglobulin E (Ig E) level, thickness of respiratory enzyme and mucus score decreased significantly in mice, and these parameters could be maintained for 48 h (Choi et al., 2018b). At the same time, researchers explored biomarkers for asthma in OVA-induced asthma mice. The extract of A. cochinchinensis was administered to the model mice at a low concentration of 250 mg/kg and a high concentration of 500 mg/kg, respectively. The changes in their metabolites were observed after administration. The results showed that the immune cells, Ig E serum concentration, the respiratory epithelium's thickness, and inflammatory cell infiltration in the airway in mice treated with A. cochinchinensis extract recovered significantly. Notably, when assessing the endogenous metabolites, only alanine, glycine,

methionine, and tryptophan were significantly recovered after *A. cochinchinensis* extract treatment, compared with the control group. Therefore, these four metabolites can be used as biomarkers to predict the anti-asthmatic effects (Choi et al., 2019). Moreover, the *A. cochinchinensis* fermentation extract was shown for the first time to accelerate the recovery from chronic asthma. It prevented airway inflammation and remodeling by restoring the cholinergic regulation of structural cells and inflammatory cells in chronic asthma treatments (Choi et al., 2018a). Furthermore, *in vitro* and *in vivo* experiments have been conducted to explore the effects of total saponins in *A.*

cochinchinensis extract on asthma. Lipopolysaccharide (LPS) -activated RAW264.7 cells and OVA-induced mice asthma were treated with saponins-rich A. cochinchinensis extract, respectively. The result showed that the concentration of nitric oxide (NO) and mRNA levels of and cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were decreased the SEAC/LPS-treated significantly in RAW264.7 cells compared with the vehicle/LPS-treated RAW264.7 cells. At the same time, the number of immune cells, infiltration of inflammatory cells and bronchial thickness decreased, meanwhile the levels of interleukin 4 (IL-4), interleukin 13 (IL-13) decreased significantly under the

No	Name	Extraction	Analytical method	Analytical condition	Monosaccharide composition	Molecular weight (Da)	Main structure	Reference
1	ACNP	distilled water refluxed (6h)	HPLC	Sugar-pack [™] column (6.5 mm × 300 mm, 10 μm) and ELSD (evaporative light scattering detector); distilled water; 0.4 ml/ min; column temperature 30°C	Fru, Glc	2690	2,1- β -D-Fruf residues, ending with a (1 \rightarrow 2) bonded α -D- Glcp	Sun et al. (2020)
			GC-MS		93.3: 6.7(area %)			
2	Radix Asparagi polysaccharide	deionized water refluxed (4.5h)	CZE	40 mM sodium tetraborate buffer (pH 10.1); hydrodynamic injection (10 cm × 4 s); 14 kV	Xyl, Ara, Glc, Rha, Man, Gal, GlcUA, GalUA	-	-	Chen et al. (2015)

TABLE 3 Composition and analysis of polysaccharides in *A. cochinchinensis*.

treatment of *A. cochinchinensis* extract (Sung et al., 2017). In general, *A. cochinchinensis* extracts can inhibit airway inflammation and remodeling, providing an important natural medicine option for the treatment of asthma.

Anti-inflammatory

Inflammation commonly occurs due to the modern lifestyle, and its complications can detrimentally affect people's health (Yeung et al., 2018; McInnes and Gravallese, 2021). Numerous studies have proved that A. cochinchinensis has antiinflammatory effect. Previous research by Kim et al., 1998 showed that A. cochinchinensis could inhibit tumor necrosis factor-a (TNF-a) secretion by inhibiting interleukin 1 (IL-1) secretion and that A. cochinchinensis extracts had antiinflammatory activity in the central nervous system (Kim et al., 1998). Another study showed that the ethanol extract of A. cochinchinensis inhibited acute and chronic inflammation. When the extract was administered at a 200 mg/kg dose, the symptoms of 12-o-tetradecanoyl-phorbol-13-acetate (TPA)induced mice ear were significantly alleviated. In addition, the skin thickness and tissue weight, inflammatory cytokine production, neutrophil-mediated myeloperoxidase (MPO) activity and histopathological parameters were significantly decreased (Lee et al., 2009). Furthermore, researchers have found that the ethyl acetate extract of A. cochinchinensis was shown to inhibits skin inflammation. In this study, phthalic anhydride (PA) -induced skin inflammation mice were used to identify the effects of A. cochinchinensis ethyl acetate extract on inflammation. The results suggest that ethyl acetate extract of A. cochinchinensis significantly reduced the concentration of Ig E, the surface thickness and number of infiltrating mast cells, and ethyl acetate extract played a key role in the treatment process (Sung et al., 2016). Using in vitro cell experiments, the

researchers showed that the A. cochinchinensis ethyl acetate extract could inhibit the LPS stimulated RAW264.7 cell NO production, COX-2 expression, reactive oxygen species (ROS) production, and the inflammatory cytokine cell cycle (Lee et al., 2017). Thus, the above research findings provide strong evidence that A. cochinchinensis extracts may have important medicinal properties for treating specific skin inflammatory diseases. Surprisingly, after fermentation with BAfW, compounds such as protodioscin were significantly enhanced. In addition, a significant suppression was observed in the expression of key members of the iNOS-mediated COX-2 induction pathway and the phosphorylation of mitogen-activated protein kinases. These observations point to the ability to inhibit inflammatory reaction occurrence (Lee et al., 2015). Furthermore, studies have shown that the compound methyl protodioscin in A. cochinchinensis can inhibit the production of pro-inflammatory factors such as interleukin 16 (IL-16), interleukin 8 (IL-8) and TNF- α in lung tissue, suggesting that the compound has therapeutic value for airway inflammatory diseases (Lee et al., 2017a). Additionally, through in vitro cell experiments, the researchers took LPSinduced microglia cell as the study model. They were found that the ethanol extract of A. cochinchinensis at $1.0 \ \mu g \ mL^{-1}$ could significantly inhibit the production of NO in microglia cell induced by LPS, so as to play an anti-inflammatory role (Jian et al., 2013). All in all, all these studies have emphasized the potential of A. cochinchinensis extract to inhibit inflammatory reactions.

Anti-oxidant

Anti-oxidants have always played a vital role in people's health (Milisav et al., 2018; Martemucci et al., 2022). Studies have recently confirmed the anti-oxidant effect of *A. cochinchinensis*

TABLE 4 Summary of pharmacological activities of A	A. cochinchinensis extracts/compounds.
--	--

Pharmacological activities	Extracts/ Compounds	Models	Results/Mechanisms	Dosages	References
Anti-asthma	Water extract (2.5 h)	Mice (OVA-induced)	↓Number of immune cells, ↓OVA- specific Ig E level, ↓thickness of respiratory epithelium and mucus score	500 mg·kg ⁻¹	Choi et al. (2018b)
	Water extract	Mice (OVA-induced)	Prevent inflammation and remodeling of airway	250 and 500 $\text{mg}{\cdot}\text{kg}^{-1}$	Choi et al. (2019)
	Water extract (2.5 h)	Mice (OVA-induced)	↓Infiltration of inflammatory cells and bronchial thickness; ↓number of macrophages and eosinophils, ↓concentration of OVA-specific Ig E, and expression of Th2 cytokines	250 and 500 $\rm mg \cdot kg^{-1}$	Choi et al. (2018a)
	Total saponin	Mice (OVA-induced); RAW264.7 cells (LPS- activated)	↓Number of immune cells, ↓infiltration of inflammatory cells, ↓bronchial thickness, ↓IL-4, IL-13 and COX-2	250 and 500 mg·kg ⁻¹ ; 200 $\mu g \cdot m L^{-1}$	Sung et al. (2017)
Anti-inflammatory	Distilled water extract (70°C for 5 h)	Astrocytes (stimulated with SP and LPS)	Inhibit TNF-alpha secretion by inhibiting IL-1 secretion	$10^1 10^3 \ \mu g m L^{-1}$	Kim et al. (1998)
	70% EtOH extract (three times, with 2 h reflux)	Mice (TPA-induced)	↓Skin thickness and tissue weight, ↓inflammatory cytokine production, ↓neutrophil-mediated MPO activity	200 mg·kg ⁻¹	Lee et al. (2009)
	Ethyl acetate extract (three times, with 2 h reflux)	Mice (IL-4/Luc/CNS-1 Tg)	↓Immunoglobulin E concentration, ↓epidermis thickness, ↓number of infiltrated mast cells	200 and 400 $\rm mg{\cdot}kg^{-1}$	Sung et al. (2016)
	Ethyl acetate extract (50°C for 24 h)	RAW264.7 cells (LPS-activated)	Inhibition of NO production, COX-2 expression, ROS production, differential regulation of inflammatory cytokines cell cycle	100 and 200 $\mu g{\cdot}mL^{-1}$	Lee et al. (2017b)
	Methyl Protodioscin	Lung epithelial cells; Mice (airway inflammation)	Inhibited the production of proinflammatory cytokines IL-6, TNF-α, IL-1β in lung tissue	10–100 μM	Lee et al. (2015)
	Butanol extract (three times)	RAW264.7 macrophage cells (LPS-stimulated)	Inhibition of proinflammatory cytokine expression	100 and 200 $\mu g {\cdot} m L^{-1}$	Lee et al. (2017b)
	75% EtOH (three times, 3 h at 70°C)	BV-2 microglial cells (LPS- induced)	Inhibition of NO production	$1.0~\mu g{\cdot}mL^{-1}$	Jian et al. (2013)
Anti-oxidant	Water extract (three times)	Mice (D-galactose-induced aging)	↑NOS, CAT, SOD activities, ↑NO content, ↓ MDA content	$0.7 \text{ g} \cdot \text{mL}^{-1}$	Lei et al. (2017)
	Water extract (three times)	Mice (D-galactose-induced aging)	↑NOS, CAT, SOD activities and the NO content; ↑expressions of NOS, ↑SOD and GPX	$0.7 \text{ g} \cdot \text{mL}^{-1}$	Lei et al. (2016)
	25% ethyl acetate extract (three times, 40°C for 2 h)	CCD-966SK cell; A375.S2 cell	↑Scavenging ability, reducing power,↑anti-tyrosinase activity of DPPH	100–1000 mg· L^{-1}	Wang et al. (2019)
	Water extract (1 h three times)	Mice (D-Galactose)	↑Spleen index and the SOD activity; ↓MDA content	2.66 g·kg ⁻¹	Xiong et al. (2011)
Anti-tumor	90% EtOH extract (80°C for 3 h)	Hep G2 cells, Hep 3B cell, LO 2 cell; mice (Tumor-Bearing)	Inhibit tumor growth and proliferation	200 mg·kg ⁻¹	Zhang et al. (2021b)
	70% EtOH extract (refluxing three times, 2 hours each time)	NCI-H460 cell	Inducing apoptosis and cell cycle arrest; inhibition of lung cancer cell proliferation	10, 50 and 100 µM	Liu et al. (2021)
	Water extract (decoction 3 h)	Hep G2 cells	Inhibited the TNF-alpha-induced apoptosis of Hep G2 cells	$1-100 \text{ mg} \cdot \text{mL}^{-1}$	Koo et al. (2000)
Antidepressant and neuroprotection	Water extract (100°C for 2 h)	Mice (Ovariectomized)	↑Brain-derived neurotrophic factor	1000 and 2000 mg·kg ⁻¹	Kim et al. (2020)
			↑Tropomyosin receptor kinase expression levels		
	MeOH extract (5 days)	Cortical neurons cell	Inhibited H2O2-induced cell death in cultured cortical neurons		Jalsrai et al. (2016)

(Continued on following page)

Pharmacological activities	Extracts/ Compounds	Models	Results/Mechanisms	Dosages	References
				0.01, 0.50 and 1.00 μM; 100 and 200 mg·kg ⁻¹	
		Mice			
Treat intestinal related diseases	Water extract (3 h, repeated twice)	Drosophila	↑The survival rate; ↓epithelial cell death; attenuated metal ion-induced gut morphological changes	$10\% \ w{\cdot}v^{-1}$	Zhang et al. (2016)
	Saponin (24 h at 50°C)	Mice (loperamide-induced constipation)	[↑] Number of stools and gastrointestinal transit, [↑] thickness of the mucosal layer, [↑] flat luminal surface, [↑] number of paneth cells, [↑] lipid droplets	1000 mg·kg ⁻¹	Kim et al. (2019)
Improve Alzheimer's disease	Water extract (121°C for 45 min)	Mice	↑Nerve growth factor secretion; ↓intracellular ROS	100 mg·kg ⁻¹	Lee et al. (2018)

TABLE 4 (Continued) Summary of pharmacological activities of A. cochinchinensis extracts/compounds.

extract. *A. cochinchinensis* is shown to significantly increase the activities of anti-oxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), nitric oxide synthase (NOS), NO, and glutathione peroxidase (GPX). Liver and kidney hematoxylin and eosin stain sections revealed that D-galactose could cause serious injury, and *A. cochinchinensis* treatment improved immunity and

substantially protected the liver and kidney from oxidative damage in aging mice (Lei et al., 2016). In a similar experiment, compared with the Vitamin C (Vc) positive control group, 0.7 mg-mL^{-1} aqueous root extract of *A*. *cochinchinensis* had similar 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic (ABTS⁺)

scavenging activities, but significantly increased superoxide anion (p < 0.05) and OH scavenging activities (p < 0.01), which suggested strong radical scavenging ability of the aqueous root extract in vitro (Lei et al., 2017). At the same time, the researchers took D-galactose -induced mice as the research object and administered intraperitoneal injection (0.2 ml/20g) to mice for 15 days to make them senile, and further explored the effect of A. cochinchinensis extract on aging mice. The study found that through the detection of mice spleen and plasma, A. cochinchinensis extract could increase the spleen index and the SOD activity, reduces malondialdehyde (MDA) content, inhibits oxidation and slows down aging (Xiong et al., 2011). Additionally, 2,2-diphenyl-1picropylhydrazine (DPPH) plays an indispensable role in antioxidant process. In a recent study, the fermented A. cochinchinensis root extract's effects on melanogenic factor levels in human epidermal melanocytes (HEMs) and its antityrosinase activity were analyzed and compared with the unfermented extract. The results showed that the scavenging ability, reducing power, and anti-tyrosinase activity of DPPH in the fermented extract were significantly increased (Wang et al., 2019). Therefore, A. cochinchinensis can be used as a natural antioxidant, with broad development and application prospects in the future.

Anti-tumor

The prevention and treatment of malignant tumors and cancer is a major challenge faced in our modern societies (Liu and Dong, 2021; DiMaio et al., 2022; Mao et al., 2022). With the development of molecular biology and pharmacology, A. cochinchinensis has attracted increasing attention from domestic and foreign medical scholars working in the cancer field. Through in vitro and in vivo experiments, A. cochinchinensis extracts were mainly internalized into tumor cells through phagocytosis, but once they entered the blood, tumor cells would be quickly cleared, further inhibiting the growth and proliferation of tumor cells (Zhang R. S. et al., 2021). Another study found that the compound 3-O-{[β -Dglucopyranosyl- $(1\rightarrow 2)$]- $[\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 4)$]- β -Dglucopyranosyl} -(25R)-5β-spirostan-3β-ol mainly exerted its effect on inhibiting the proliferation of human large cell lung cancer cells (NCI-H460) by inducing apoptosis and cell cycle arrest, with an IC₅₀ value of $1.39 \,\mu\text{M}$ (Liu et al., 2021). Besides that, the extract of A. cochinchinensis (1-100 mg/ml) dosedependently not only inhibited the EtOH-induced tumor necrosis TNF- α secretion but also inhibited the EtOH and TNF- α -induced cytotoxicity. In addition, the extract of A. cochinchinensis inhibited the TNF-a -induced apoptosis of Hep G2 cells. Therefore, the above results suggest that A. cochinchinensis may prevent the EtOH-induced cytotoxicity by inhibiting the apoptosis of Hep G2 cells (Koo et al., 2000). These

studies will provide a reference for further in-depth clinical application of *A. cochinchinensis* in cancer treatment.

Anti-depressant and neuroprotection

The risk of depression has greatly increased due to the enormous mental and physical stress people face due to modern, fast-paced lifestyles (Martins and S., 2018; Angeloni and Vauzour, 2019; Payne et al., 2022). The researchers ovariectomized rats and exposed them to a chronic stress reaction state for 4 weeks. They additionally administered A. cochinchinensis extract (1000 and 2000 mg/kg) to observe mental state alterations of the menopausal rats. The results showed that the expression of brain-derived neurotrophic factor (BDNF) and its main receptor tropomyosin receptor kinase B (TrkB) increased in rats. Thus, A. cochinchinensis extract could potentially exert anti-depressant effects (Kim et al., 2020). In addition, another study showed that the A. cochinchinensis extract, activating phosphatase 2 (Shp-2), ERK1/2, and Akt signaling pathways, could directly affect treating depression and nerve protection (Jalsrai et al., 2016). The pathogenesis of Alzheimer's disease is unclear, but neuroprotection is shown in different studies to prevent and alleviate it. Lee et al., 2018 study showed that phenols, saponins and protodiosgenin in A. cochinchinensis extracts induced enhanced nerve growth factor secretion and decreased intracellular ROS in neurons and of microglia cell lines, inhibiting the activity acetylcholinesterase, thereby improving Alzheimer's disease (Lee et al., 2018). This study provides novel directions for developing new drugs from A. cochinchinensis, and, more importantly, offers new insights into the treatment of Alzheimer's disease.

Effects on the gut

Maintaining a normal gut and digestive tract function is one of the key elements to maintaining good health (Sommer et al., 2017; Fassarella et al., 2021; Nathan et al., 2021). Studies have shown that A. cochinchinensis extract can treat gut damage caused by metal ions. To evaluate such A. cochinchinensis extract effects, the metal ions Drosophila model was used. The results showed that A. cochinchinensis extract can improved the survival rate of Drosophila melanogaster, reduce the mortality of intestinal epithelial cells, and the reduce the intestinal damage caused by metal ions (Zhang L. et al., 2021). At the same time, Kim et al., 2019 found that saponins can increase stool frequency, gastrointestinal transit, mucosal layer thickness, flat luminal surface, and the number of paneth cells, thus playing a role in the treating constipation. Improvements were also observed in the levels of acetylcholine esterase activity, the phosphorylation of myosin light chains, and the expression of muscarinic

acetylcholine receptors M2/M3 (Kim et al., 2019). This study provides strong evidence for *A. cochinchinensis* applications in treating certain gut-related diseases. However, another study showed that polysaccharides in *A. cochinchinensis* have a role in gut flora regulation. The impact of inulin-type fructan on gut microbiota was investigated by *in vitro* mediation with human fecal cultures. The results showed that inulin-type fructan was digested by gut microbiota, while the pH value in the *A. cochinchinensis* neutral polysaccharide (ACNP) fecal culture was greatly decreased. The total short-chain fatty acids, acetic, propionic, i-valeric, and n-valeric acids were significantly increased (Sun et al., 2020). Collectively, inulin-type fructan was shown to regulate gut microbiota beneficially (Vandeputte et al., 2017; Tao et al., 2021). Thus, it has the potential to be used as a dietary supplement or drug to improve health.

Other activities

As *A. cochinchinensis* is widely used as a traditional herbal medicine with high medicinal value, its safety profile is very important. A recent study evaluated the hepatotoxicity and nephrotoxicity of *A. cochinchinensis* toward the livers and kidneys in ICR mice. Female and male ICR mice were orally administered with 150 mg/kg, 300 mg/kg, and 600 mg/kg *A. cochinchinensis* extract for 14 days, respectively, and the

changes in relevant markers (organ weight, urine composition, liver pathology, and kidney pathology) were observed. The results showed that Female and male ICR mice were orally administered with 150 mg/kg, 300 mg/kg, and 600 mg/kg *A. cochinchinensis* extract for 14 days, respectively, and the changes in relevant markers (organ weight, urine composition, liver pathology, and kidney pathology) were observed (Sung et al., 2017a). Therefore, the saponins in the *A. cochinchinensis* extract have no specific liver and kidney toxicity, reinforcing the excellent safety profile of *A. cochinchinensis*.

Applications

A. cochinchinensis embodies not only significant medicinal value in the field of TCM but also shows distinctive application value in the fields of pharmaceuticals, health care products, food, cosmetics, and others. These applications are summarized in Figure 6, and *A. cochinchinensis* patents in pharmaceuticals, foods, health products and cosmetics are listed in Table 5.

As mentioned above, *A. cochinchinensis* contains numerous active compounds having many promising effects *in vitro* and *in vivo*, indicating their great potential to for pharmaceutical applications (Ren et al., 2021). The pharmaceutical properties

TABLE 5 The patents for A. cochinchinensis.

Pharmaceutical Inability of the second o	NO	Patent name	Approval number
11Traditional Chinese medicine pill for treating internal injury coughCN10401393282A traditional Chinese medicine for treating old coughCN10350114183Chinese medicine for clearing lung in childrenCN1035059484Application and preparation method of pharyngitis tabletCN1036611385A drug and capsule for constipationCN10394878086A traditional Chinese medicine preparation for rapid cough reliefCN10334074887A Chinese herbid compound for the treatment of jaundice hepatitis and cholecystitisCN10334074888A Chinese medicine combination for anti-aging and its preparation methodCN10369079889A pharmaceutical composition for treating juvenile white hair lossCN103690798870ISadar asparagi and platycodon grandiforum healthcare rice crustCN10362639871B adix asparagi and platycodon grandiforum healthcare rice crustCN10386978872A raditional Chinese medicine health wine and its preparation method lipidCN10386903873A raditional wine for lowering blood presure, blood sugar and blood lipidCN10386903874A langerity medicinal wine and its preparation methodCN10331375875A langerity medicinal wine and its preparation methodCN10331375876A condincinensis whitening compound soapCN10331375876A condincinensis whitening compound soapCN10331375876A condincinensis whitening compound soapCN10335031877A spant combination for delaying skin aging and its preparation methodCN103	Pharmaceutical		
2A traditional Chinese medicine for treating old coughCN10361114183Chinese medicine for clearing lung in childrenCN10355059484Application and preparation method of pharyngitis tabletCN10365641585A drug and capsule for constipationCN1039487086A traditional Chinese medicine preparation for rapid cough reliefCN10302807517A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN1034974888A Chinese medicine combination for anti-aging and its preparation methodCN1034970809A pharmaceutical composition for treating juvenile white hair lossCN1036208751FoodCN103620875110Rakia asparagi and platycodon grandiflorum healthcare rice crustCN103620876111Rehmannia-radix asparagi beverage and preparation method thereofCN103621855812A preparation method of health jelly with algae flavorCN103620893813A fraditional Chinese medicine health wine and its preparation method lipidCN10316795814A traditional chinese medicine lealth wine and its preparation methodCN10316795815A longevity medicinal wine and its preparation methodCN10316718116A longivity medicinal wine and its preparation methodCN10336013816A longivity medicinal wine and its preparation methodCN10336013816A longivity medicinal sopCN10336013817A cochinchinensis whitening compound sopCN10336038318Beauty antibacterial soapCN1033505118 <tr< td=""><td>1</td><td>Traditional Chinese medicine pill for treating internal injury cough</td><td>CN104013932B</td></tr<>	1	Traditional Chinese medicine pill for treating internal injury cough	CN104013932B
3Chinese medicine for clearing lung in childrenCN1035059484Application and preparation method of pharyngitis tabletCN10365641585A drug and capsule for constipationCN1039487086A traditional Chinese medicine preparation for rapid cough reliefCN10320807587A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN1034974888A pharaceutical compound for the treatment of jaundice hepatitis and cholecystitisCN1034974889A pharaceutical composition for rating ignenial white hair lossCN103497008FoodCN103407008CN10352059810Radix asparagi and platycodon grandiflorum healthcare rice crustCN103652639811Rehmannia-radix asparagi beverage and preparation method thereofCN103621855812A preparation method of health jelly with algae flavorCN103621855813A fuedicinal wine for lovering blood pressure, blood sugar and blood lipidCN10340748414A traditional Chinese medicine health wine and its preparation methodCN103470478415A longevity medicinal wine and its preparation methodCN103470478416A longevity medicinal wine and its preparation methodCN10346121817A cochinchinensis whitening compound soapCN10346121818Beauty antibacterial soapCN103450511819A plant combination for delaying skin aging and its preparation methodCN103550511819A plant combination for delaying skin aging and its preparation methodCN103550511820A ran	2	A traditional Chinese medicine for treating old cough	CN103611141B
4Application and preparation method of pharyngitis tabletCN10365641585A drug and capsule for constipationCN1034878086A traditional Chinese medicine preparation for rapid cough reliefCN1032805787A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN1034974888A Chinese medicine combination for anti-aging and its preparation methodCN1034974889A pharmaceutical composition for treating juvenile white hair lossCN1035907988FoodCN103652639810Radix asparagi and platycodon grandiflorum healthcare rice crustCN103652639811Rehmannia-radix asparagi beverage and preparation method thereofCN1036102189112A negoration method of health jelly with algae flavorCN103650631813A nedicinal wine for lowering blood pressure, blood sugar and blood lipidCN10380903814A traditional Chinese medicine health wine and its preparation methodCN10313795815A longevity medicinal wine and its preparation methodCN10313795816A cochinchinesis whitening compound soapCN103780511817A cochinchinesis whitening compound soapCN10358957818Batty antibacterial soapCN10358957819A plant combination for delaying skin aging and its preparation methodCN10359578119A plant combination for delaying skin aging and its preparation methodCN10359578120A raditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN103595781	3	Chinese medicine for clearing lung in children	CN103550594B
5A drug and capsule for constipationCN103948780B6A traditional Chinese medicine preparation for apid cough reliefCN103028057B7A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN103349748B8A Chinese medicine combination for anti-aging and its preparation methodCN193470700B9A pharmaceutical composition for treating juvenile white hair lossCN103690798BFoodCN103690798B10Radix asparagi and platycodon grandiflorum healthcare rice crustCN103621657B11A preparation method of health jelly with alga flavorCN103621857B12A preparation method of health jelly with alga flavorCN103621857B13A redictional wine for lowering blood pressure, blood sugar and blood lipidCN103130795B14A traditional Chinese medicine health wine and its preparation methodCN103130795B15A longevity medicinal wine and its preparation methodCN10313795B16A cohinchinensis whitening compound soapCN10350511B17A cohinchinensis whitening compound soapCN10350511B18Beaty antibacterial soapCN10350511B19A plant combination for delaying skin aging and its preparation methodCN10350511B20A raditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN103520511B21A conditionation for delaying skin aging and its preparation methodCN103520511B22A plant combination for delaying skin aging and its preparation methodCN103520511B<	4	Application and preparation method of pharyngitis tablet	CN103656415B
6A traditional Chinese medicine preparation for rapid cough reliefCN103028057B7A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN103349748B8A Chinese medicine combination for anti-aging and its preparation methodCN194370700B9A pharmaceutical composition for treating juvenile white hair lossCN103690798BFoodKadix asparagi and platycodon grandiflorum healthcare rice crustCN10362639B10Rehmannia-radix asparagi beverage and preparation method thereofCN1032150912B12A preparation method of health jelly with algae flavorCN103621855B14A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN10380903B15A longevity medicinal wine and its preparation methodCN1032951B6B16A longevity medicinal wine and its preparation methodCN1032951B6B17A cochinchinensis whitening compound soapCN10328057B18Beauty antibacterial soapCN10328057B19A plant combination for delaying skin aging and its preparation methodCN10328057B19A plant combination for delaying skin aging and its preparation methodCN10328057B19A plant combination for delaying skin aging and its preparation methodCN10328057B10A raditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN1032807B19A plant combination for delaying skin aging and its preparation methodCN1032807B10A randicinal chine second skin aging and its preparation methodCN1032807B	5	A drug and capsule for constipation	CN103948780B
7A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitisCN10334974888A Chinese medicine combination for anti-aging and its preparation methodCN19437070089A pharmaceutical composition for treating juvenile white hair lossCN1036907988FoodSN103690798810Radix asparagi and platycodon grandiflorum healthcare rice crustCN103652639811Rehmannia-radix asparagi beverage and preparation method thereofCN103210912812A preparation method of health jelly with alga flavorCN1036218558Health productSN10386003813A fraditional Chinese medicine health wine and its preparation methodCN103795816A longevity medicinal wine and its preparation methodCN103795815A longevity medicinal wine and its preparation methodCN10379586CosmeticCN103795817A cohinchinensis whitening compound soapCN10350511818Bauty antibacterial soapCN10350511819A plant combination for delaying skin aging and its preparation methodCN10350511820A raditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10350511821A compared additing for ciencent and its preparation method and its preparation methodCN10350511821A compared additing for ciencent and its preparation methodCN10350511822A continuent of delaying skin aging and its preparation methodCN10350511823A plant combination for delaying skin aging and its prep	6	A traditional Chinese medicine preparation for rapid cough relief	CN103028057B
8A Chinese medicine combination for anti-aging and its preparation methodCN19437070089A pharmaceutical composition for treating juvenile white hair lossCN1036907988Food10Radix asparagi and platycodon grandiflorum healthcare rice crustCN103652639811A preparation method of health jelly with algae flavorCN103612051812A preparation method of health jelly with algae flavorCN1036218558Health productCN10360093813A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN10360093814A traditional Chinese medicine health wine and its preparation methodCN10313795815A longevity medicinal wine and its preparation methodCN103251868CosmeticCN1035213816A cochrinchinensis whitening compound soapCN10352051818Gauty antibacterial soapCN10352051819A plant combination for delaying skin aging and its preparation methodCN1032800820A raditional Chinese Medicine composition for increasing skin moisture and its preparation methodCN10352051820A plant combination for delaying skin aging and its preparation methodCN10352051820A plant combination for delaying skin aging and its preparation methodCN1032800821A compound coline for sinerate and its preparation methodCN1032800821A compound colinie for sinerate and its preparation method and mellicitingCN1032800821A compound colinie for sinerate and its preparation methodCN103	7	A Chinese herbal compound for the treatment of jaundice hepatitis and cholecystitis	CN103349748B
9A plaranceutical composition for treating juvenile white hair lossCN103690798BFoodRefuxer and platycodon grandiflorum healthcare rice crustCN10352639B11Refumania-radix asparagi beverage and preparation method thereofCN102150912B12A preparation method of health jelly with alga flavorCN103621855BFleath productInterview and preparation method sugar and blood lipidCN103860903B14A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN1031795B15A longevity medicinal wine and its preparation methodCN1031795B16A longevity medicinal wine and its preparation methodCN1032186BCosmeticInterview and jub preparation methodCN1035118B17A cochinchinensis whitening compound soapCN103589537B18A plant combination for delaying skin aging and its preparation methodCN103589537B19A traditional for indealying skin aging and its preparation methodCN103589537B20A traditional for delaying skin aging and its preparation methodCN103589537B20A traditional for delaying skin aging and its preparation methodCN103589537B20A traditional for delaying skin aging and its preparation methodCN103589537B20A traditional for delaying skin aging and its preparation methodCN103589537B20A traditional for delaying skin aging and its preparation methodCN103589537B21A compared additive for sizerrative and its preparation method and emplanterionCN103580511B	8	A Chinese medicine combination for anti-aging and its preparation method	CN194370700B
FoodCN103652639E10Radix asparagi and playcodon grandiflorum healthcare rice crustCN103552639E11Rehmannia-radix asparagi beverage and preparation method thereofCN103150912E12A preparation method of health jelly with alga flavorCN103621855EHealth product13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN103860903E14A traditional Chinese medicine health wine and its preparation methodCN1031795E15A longevity medicinal wine and its preparation methodCN103295186E16A loagevity medicinal diabetesCN1032518E17A cochinchinensis whitening compound soapCN10332937E18Beaty antibacterial soapCN10350511E19A plant combination for delaying skin aging and its preparation methodCN10322800E10CN10322800ECN10322800E10A traditional Chinese Medicine composition for increasing skin moisture and its preparation methodCN10322800E10A traditional chinese medicine composition for increasing skin moisture and its preparation methodCN10322800E11A compound addition for a circerent and its preparation method and amplicationCN1032280E	9	A pharmaceutical composition for treating juvenile white hair loss	CN103690798B
10Radix asparagi and platycodon grandiflorum healthcare rice crustCN103652639B11Rehmannia-radix asparagi beverage and preparation method thereofCN102150912B12A preparation method of health jelly with algae flavorCN103621855BHealth product13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN103860903B14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN10325186BCosmeticCN10350511B18Beauty antibacterial soapCN10350511B19A flational Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800B00thersCN10322800B	Food		
11Rehmania-radix asparagi beverage and preparation method thereofCN102150912B12A preparation method of health jelly with algae flavorCN103621855BHealth product13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN103860903B14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN10235186B17A. cochinchinensis whitening compound soapCN103361213B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN10322800B20A traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800B11A compound addition for cienterts and its preparation method and antilectionCN1032767CF	10	Radix asparagi and platycodon grandiflorum healthcare rice crust	CN103652639B
12A preparation method of health jelly with algae flavorCN103621855BHealth product13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN10360903B14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN102935186BCosmeticImage: Statistic	11	Rehmannia-radix asparagi beverage and preparation method thereof	CN102150912B
Health productCN103860903B13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN103860903B14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN102935186BCosmeticImage: Cosmetic structureCN103361213B17A. cochinchinensis whitening compound soapCN10336937B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN1032500B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BChtersImage: Cosmetic structure and its preparation method and amplicationCN1025260C2P	12	A preparation method of health jelly with algae flavor	CN103621855B
13A medicinal wine for lowering blood pressure, blood sugar and blood lipidCN103860903B14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN102935186BCosmeticImage: Cosmetic state of preventing compound soapCN103361213B18Beauty antibacterial soapCN103589537B19A long vintion for delaying skin aging and its preparation methodCN103550511B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BChtersImage: Cosmetic state and its preparation method and ambientionCN10325105C2P	Health product		
14A traditional Chinese medicine health wine and its preparation methodCN103013795B15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN102935186BCosmeticCN103361213B17A. cochinchinensis whitening compound soapCN103369537B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN1032500511B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BChtersCN103550511B	13	A medicinal wine for lowering blood pressure, blood sugar and blood lipid	CN103860903B
15A longevity medicinal wine and its preparation methodCN104784474B16A health tea for preventing diabetesCN102935186BCosmetic17A. cochinchinensis whitening compound soapCN103361213B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN103550511B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BChters	14	A traditional Chinese medicine health wine and its preparation method	CN103013795B
16A health tea for preventing diabetesCN102935186BCosmetic17A. cochinchinensis whitening compound soapCN103361213B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN103550511B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BOthers	15	A longevity medicinal wine and its preparation method	CN104784474B
Cosmetic 17 A. cochinchinensis whitening compound soap CN103361213B 18 Beauty antibacterial soap CN103589537B 19 A plant combination for delaying skin aging and its preparation method CN103550511B 20 A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation method CN10322800B Others 21 A compound addition for circerate and its preparation method and amplication CN1025 40052P	16	A health tea for preventing diabetes	CN102935186B
17A. cochinchinensis whitening compound soapCN103361213B18Beauty antibacterial soapCN103589537B19A plant combination for delaying skin aging and its preparation methodCN103550511B20A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation methodCN10322800BOthersCN103550511BCN10322800B	Cosmetic		
18 Beauty antibacterial soap CN103589537B 19 A plant combination for delaying skin aging and its preparation method CN103550511B 20 A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation method CN101322800B Others CN1025 40552P	17	A. cochinchinensis whitening compound soap	CN103361213B
19 A plant combination for delaying skin aging and its preparation method CN103550511B 20 A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation method CN101322800B Others CN103550511B CN103550511B	18	Beauty antibacterial soap	CN103589537B
20 A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation method CN101322800B Others 21 A compound addition for circrette and its preparation method and application CN102540552B	19	A plant combination for delaying skin aging and its preparation method	CN103550511B
Others	20	A Traditional Chinese Medicine Composition for increasing skin moisture and its preparation method	CN101322800B
11 A compound additive for circrette and its propagation method and application CN100540653P	Others		
21 A compound auditive for cigarette and its preparation method and application CN103549652B	21	A compound additive for cigarette and its preparation method and application	CN103549652B
22 A chrysanthemum scented snuff CN103005679B	22	A chrysanthemum scented snuff	CN103005679B
23 A.cochinchinensis immune adjuvant and influenza vaccine containing the adjuvant CN101926995B	23	A.cochinchinensis immune adjuvant and influenza vaccine containing the adjuvant	CN101926995B

of A. cochinchinensis were recorded well in ancient Chinese medical literature. Nowadays, A. cochinchinensis has a wide range of clinical applications in the respiratory, digestive, urinary system, with diverse uses. Clinically, A. cochinchinensis is often used to treat respiratory diseases such as cough, asthma, and lung cancer. A. cochinchinensis can be used alone, in combination with other pharmaceuticals, or for external use (Hong et al., 2000; Liu et al., 2015). Health care products are becoming highly popular as people pay increasing attention to their physical health (Tabatabai and Sellmeyer, 2021). A. cochinchinensis through self-fermentation or fermentation with other Chinese herbal medicines, is marketed form of functional medicinal wine (Kim et al., 2017; Wuyts et al., 2020). It contributes to lowering blood pressure, blood sugar, and blood lipid, so it is highly sought after by middle-aged and elderly people (Sikand et al., 2015). Moreover, there are functional teas with health-promoting properties (Fu et al., 2018). A. cochinchinensis is also widely used in the food and culinary field. In the folk, people usually use A. cochinchinensis is used as the main raw material to cook porridge or paste, used to relieve cough, expectorant, tonsillitis, dry throat, sore throat, hemoptysis, and treat constipation. It is also processed into A. cochinchinensis candied fruit, that is popular, especially among young people. Certain modern A. cochinchinensis foods products have been patented, such as Radix asparagi and platycodon grandiflorum healthcare rice crust, Rehmannia-radix asparagi beverage and health jelly with algae flavor. Recent studies have shown that long-term consumption of A. cochinchinensis as a traditional edible plant can inhibit the production of proinflammatory cytokines interleukin-1 beta (IL-1β) and TNF-α, thereby treating various immune-related diseases (Safriani et al., 2022). Despite the currently limited research on A. cochinchinensis food products, A. cochinchinensis has great potential applications and novel future products in the food field. Interestingly, the extract obtained from fermented A. cochinchinensis is also used as a whitening facial mask and whitening soap, with increasing sales, as it can inhibit the formation of tyrosinase and melanin (Sakuma et al., 1999; Pillaiyar et al., 2017). At the same time, patents granted on *A. cochinchinensis* show that it has beneficial properties for improving skin aging, skin whitening, reducing skin wrinkles, and moisturizing, among others. Therefore, the potential of further *A. cochinchinensis* commercial applications in the cosmetics industry should be sought after with increased research efforts.

Conclusions and perspectives

In this paper, we review the botany, traditional uses, phytochemistry, applications, and pharmacology activities of A. cochinchinensis according to ancient classics and modern researches, and it will provide a new insight for future exploration of A. cochinchinensis. The root of A. cochinchinensis has been widely used to treat cough, fever, pneumonia, stomachache, tracheitis, rhinitis, cataract, acne and urticaria. Meanwhile, the root of A. cochinchinensis has a predominant therapeutic effect in diseases such as sthma, constipation, pneumonia. Interestingly, A. cochinchinensis exerts multiple functions as medicine, food, and cosmetics, which has been widely used as whitening or healthcare product. Up to now, more than 90 compounds have been isolated and identified from A. cochinchinensis. Among these constituents, steroidal saponins represent the main active ingredients. It is expected that more compounds of these categories will be discovered in the future studies. In addition, researches have shown that both extracts and active components of A. cochinchinensis possess a wide range of pharmacological activities, including anti-asthma, anti-inflammatory, antioxidation, anti-tumor, improving Alzheimer's disease, nerve protection, gut health-promoting and so on. These modern pharmacological studies supported most traditional uses of A. cochinchinensis as an indispensable TCM.

However, gaps still exist in the systematic research on A. cochinchinensis. Firstly, reported studies have shown that the main chemical components of A. cochinchinensis is steroidal saponins. While other chemical constituents such as polysaccharides, lignans and amino acids extracted and isolated from A. cochinchinensis are very few compared with steroidal saponins. More chemical constituents must be obtained to explore the relationship between compounds and pharmacological effects in depth. Therefore, new separation and analysis techniques should be developed and implemented to analyze and determine A. cochinchinensis chemical composition comprehensively. Secondly, quality standards have not been adequately set. Since A. cochinchinensis has a wide variety and is easily confused with other varieties, it is very necessary to establish a complete set of quality standards to distinguish these products. This will also contribute to better-protecting people's health and safety. Thus, it is crucial to establish the A. cochinchinensis quality analytical

standards and find the appropriate markers to implement such quality control. At the same time, it is also necessary to conduct systematic and in-depth research on the toxicology of *A. cochinchinensis* to improve the safety profile of its clinical use. Thirdly, the main part of *A. cochinchinensis* used for medicinal compound extraction is its dried root, and the other parts are discarded. However, the resources of roots are relatively rare compared to the resources of leaves and fruits. In the future, indepth research should be conducted on the leaves and fruits of *A. cochinchinensis*, to explore their value so that the plant can be fully utilized. This reduces the waste of plant resources and might contribute to the development of new drugs, as novel compounds might be discovered in other plant parts. Therefore, we should solve the existing problems as soon as possible, so that the future development of *A. cochinchinensis* will be better.

In addition, in order to further elucidate the mechanism of A. cochinchinensis in treating diseases, it is essential to establish the internal relationship between chemical components and their pharmacological activities. Pharmacokinetic studies of A. cochinchinensis can also be conducted to try to elucidate its changes including absorption, distribution, metabolism and excretion. This will further elucidate the complex relationship between chemical components and clinical effects to reveal potential mechanism of action. At the same time, A. cochinchinensis can also be used as food and nutritional supplement. People become more aware of their health, edible Chinese herbal medicines with health-promoting and therapeutic effects are becoming very popular. On this basis, in-depth research should be conducted in the fields of A. cochinchinensis health products, food, and cosmetics, which may have broader prospects for future development, providing new idea for A. cochinchinensis research.

To sum up, the root of *A. cochinchinensis* is an important edible medicinal herb with extensive pharmacological activities and great values in medicine, food, and cosmetics. However, more in-depth and comprehensive studies on clinical utility are needed to determine its safety and availability. Until now, multiple compounds have been discovered in *A. cochinchinensis*, but what we have done is far from enough. Furthermore, the precise molecular mechanisms of these active ingredients in some diseases still worth further study. Consequently, systematic studies on phytochemistry and bioactivities of *A. cochinchinensis* will undoubtedly be the key direction of future research. This review should provide an important reference for the development and application of *A. cochinchinensis*. Siand et al., 2015, Sheng, 2022b.

Author contributions

MW and HK proposed the framework of this paper. SW and ZW drafted the manuscript. SW and WH make tables and

figures. BY provided some helpful suggestions in this paper. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No.81803686), Supporting Project of National Natural Science Foundation (No.2018PP01), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No.UNPYSCT-2020225), Special Fund Project of Post doctor in Heilongjiang Province (LBH-Q20180), Chief Scientist of Qi-Huang Project of National Traditional Chinese Medicine Inheritance and Innovation "One Hundred Million" Talent Project ([2021] No.7), Heilongjiang Touyan Innovation Team Program ([2019] No.5).

References

Angeloni, C., and Vauzour, D. (2019). Natural products and neuroprotection. Int. J. Mol. Sci. 20 (22), 5570. doi:10.3390/ijms20225570

Chang, G. T., Min, S. Y., Kim, J. H., Kim, S. H., Kim, J. K., and Kim, C. H. (2005). Anti-thrombic activity of Korean herbal medicine, Dae-Jo-Whan and its herbs. *Vasc. Pharmacol.* 43 (4), 283–288. doi:10.1016/j.vph.2005.08.014

Chen, J., Yang, F., Guo, H., Wu, F., and Wang, X. (2015). Optimized hydrolysis and analysis of *Radix Asparagi* polysaccharide monosaccharide composition by capillary zone electrophoresis. *J. Sep. Sci.* 38 (13), 2327–2331. doi:10.1002/jssc.201500120

Choi, J. Y., Kim, J. E., Park, J. J., Lee, M. R., Song, B. R., Park, J. W., et al. (2018a). The anti-inflammatory effects of fermented herbal roots of *Asparagus cochinchinensis* in an ovalbumin-induced asthma model. *J. Clin. Med.* 7 (10), 377. doi:10.3390/jcm7100377

Choi, J. Y., Kim, S. H., Kim, J. E., Park, J. W., Kang, M. J., Choi, H. J., et al. (2019). Four amino acids as serum biomarkers for anti-asthma effects in the ovalbumininduced asthma mouse model treated with extract of Asparagus cochinchinensis. *Lab. Anim. Res.* 35 (1), 32–10. doi:10.1186/s42826-019-0033-x

Choi, J. Y., Park, J. W., Kim, J. E., Park, J. J., Lee, M. R., Song, B. R., et al. (2018b). Dose dependence and durability of the therapeutic effects of Asparagus cochinchinensis fermented extract in an ovalbumin-challenged asthma model. *Lab. Anim. Res.* 34 (3), 101–110. doi:10.5625/lar.2018.34.3.101

DiMaio, D., Emu, B., Goodman, A. L., Mothes, W., and Justice, A. (2022). Cancer microbiology. J. Natl. Cancer Inst. 114 (5), 651–663. doi:10.1093/jnci/djab212

Fassarella, M., Blaak, E. E., Penders, J., Nauta, A., Smidt, H., and Zoetendal, E. G. (2021). Gut microbiome stability and resilience: Elucidating the response to perturbations in order to modulate gut health. *Gut* 70 (3), 595–605. doi:10.1136/gutjnl-2020-321747

Fu, Y., Yang, J. C., Cunningham, A. B., Towns, A. M., Zhang, Y., Yang, H. Y., et al. (2018). A billion cups: The diversity, traditional uses, safety issues and potential of Chinese herbal teas. *J. Ethnopharmacol.* 222, 217–228. doi:10.1016/j.jep.2018.04.026

Hong, S. J., Fong, J. C., and Hwang, J. H. (2000). Effects of crude drugs on glucose uptake in 3T3-L1 adipocytes. *Kaohsiung J. Med. Sci.* 16 (9), 445–451.

Jalsrai, A., Numakawa, T., Kunugi, H., Dieterich, D. C., Becker, A., and Becker, A. (2016). The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: *In vitro* and *in vivo* studies. *Neuroscience* 322, 452–463. doi:10.1016/j.neuroscience.2016.02.065

Jian, R., Zeng, K. W., Li, J., Li, N., Jiang, Y., and Tu, P. (2013). Antineuroinflammatory constituents from Asparagus cochinchinensis. *Fitoterapia* 84, 80–84. doi:10.1016/j.fitote.2012.10.011

Jung, K. H., Choi, H. L., Park, S., Lee, G., Kim, M., Min, J. K., et al. (2014). The effects of the standardized herbal formula PM014 on pulmonary inflammation and airway responsiveness in a murine model of cockroach allergen-induced asthma. *J. Ethnopharmacol.* 155 (1), 113–122. doi:10.1016/j.jep.2014.04.029

Kim, H., Lee, E., Lim, T., Jung, J., and Lyu, Y. (1998). Inhibitory effect of *Asparagus cochinchinensis* on tumor necrosis factor-alpha secretion from astrocytes. *Int. J. Immunopharmacol.* 20 (4-5), 153–162. doi:10.1016/s0192-0561(98)00022-8

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Kim, H. R., Lee, Y. J., Kim, T. W., Lim, R. N., Hwang, D. Y., Moffat, J. J., et al. (2020). Asparagus cochinchinensis extract ameliorates menopausal depression in ovariectomized rats under chronic unpredictable mild stress. *BMC Complement. Med. Ther.* 20 (1), 325. doi:10.1186/s12906-020-03121-0

Kim, J. E., Park, J. W., Kang, M. J., Choi, H. J., Bae, S. J., Choi, Y. S., et al. (2019). Anti-inflammatory response and muscarinic cholinergic regulation during the laxative effect of Asparagus cochinchinensis in loperamide-induced constipation of SD rats. *Int. J. Mol. Sci.* 20 (4), 946. doi:10.3390/ijms20040946

Kim, J. Y., Choi, H. Y., Kim, H. M., Choi, J. H., and Jang, D. S. (2021). A novel cytotoxic steroidal saponin from the roots of Asparagus cochinchinensis. *Plants* 10 (10), 2067. doi:10.3390/plants10102067

Kim, M., Kim, W. B., Koo, K. Y., Kim, B. R., Kim, D., Lee, S., et al. (2017). Optimal fermentation conditions of hyaluronidase inhibition activity on Asparagus cochinchinensis merrill by Weissella cibaria. *J. Microbiol. Biotechnol.* 27 (4), 701–708. doi:10.4014/jmb.1611.11051

Koo, H. N., Jeong, H. J., Choi, J. Y., Choi, S. D., Choi, T. J., Cheon, Y. S., et al. (2000). Inhibition of tumor necrosis factor-alpha-induced apoptosis by Asparagus cochinchinensis in Hep G2 cells. *J. Ethnopharmacol.* 73 (1-2), 137–143. doi:10.1016/s0378-8741(00)00287-7

Kubota, S., Konno, I., and Kanno, A. (2012). Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. TAG. Theoretical and applied genetics. *Theor. Appl. Genet.* 124 (2), 345–354. doi:10.1007/s00122-011-1709-2

Lee, D. Y., Choo, B. K., Yoon, T., Cheon, M. S., Lee, H. W., Lee, A. Y., et al. (2009). Anti-inflammatory effects of Asparagus cochinchinensis extract in acute and chronic cutaneous inflammation. *J. Ethnopharmacol.* 121 (1), 28–34. doi:10. 1016/j.jep.2008.07.006

Lee, H. A., Kim, J. E., Sung, J. E., Yun, W. B., Kim, D. S., Lee, H. S., et al. (2018). Asparagus cochinchinensis stimulates release of nerve growth factor and abrogates oxidative stress in the Tg2576 model for Alzheimer's disease. *BMC Complement. Altern. Med.* 18 (1), 125. doi:10.1186/s12906-017-1775-3

Lee, H. A., Koh, E. K., Sung, J. E., Kim, J. E., Song, S. H., Kim, D. S., et al. (2017b). Ethyl acetate extract from Asparagus cochinchinensis exerts antiinflammatory effects in LPS-stimulated RAW264. 7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. *Mol. Med. Rep.* 15 (4), 1613–1623. doi:10.3892/mmr.2017.6166

Lee, H. A., Song, B. R., Kim, H. R., Kim, J. E., Yun, W. B., Park, J. J., et al. (2017a). Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. *Exp. Ther. Med.* 14 (5), 4986–4994. doi:10.3892/etm.2017.5200

Lee, H. J., Park, J. S., Yoon, Y. P., Shin, Y. J., Lee, S. K., Kim, Y. S., et al. (2015). Dioscin and methylprotodioscin isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway

MUC5AC mucin induced by phorbol ester and growth factor. *Phytomedicine* 22 (5), 568–572. doi:10.1016/j.phymed.2015.03.009

Lee, J. H., Lim, H. J., Lee, C. W., Son, K. H., Son, J. K., Lee, S. K., et al. (2015). Evidence-based complementary and alternative medicine, *Methyl* protodioscin from the roots of Asparagus cochinchinensis attenuates airway inflammation by inhibiting cytokine productioneCAM, 2015, 640846, doi:10. 1155/2015/640846

Lee, S. R., Park, H. S., Kim, B. Y., Lee, J. H., Fan, Q., Gaskin, J. F., et al. (2019). An unexpected genetic diversity pattern and a complex demographic history of a rare medicinal herb, Chinese asparagus (Asparagus cochinchinensis) in Korea. *Sci. Rep.* 9 (1), 9757. doi:10.1038/s41598-019-46275-9

Lei, L., Chen, Y., Ou, L., Xu, Y., and Yu, X. (2017). Aqueous root extract of Asparagus cochinchinensis (Lour.) Merr. Has antioxidant activity in D-galactose-induced aging mice. *BMC Complement. Altern. Med.* 17 (1), 469. doi:10.1186/s12906-017-1975-x

Lei, L., Ou, L., and Yu, X. (2016). The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in D-galactose induced mice aging model and *in vitro. J. Chin. Med. Assoc.* 79 (4), 205–211. doi:10.1016/j.jcma.2015.06.023

Li, X. N., Chu, C., Cheng, D. P., Tong, S. Q., and Yan, J. Z. (2012). Norlignans from Asparagus cochinchinensis. *Nat. Prod. Commun.* 7 (10), 1357–1358.

Liang, Z. Z., Aquino, R., De Simone, F., Dini, A., Schettino, O., and Pizza, C. (1988). Oligofurostanosides from Asparagus cochinchinensis. *Planta Med.* 54 (04), 344–346. doi:10.1055/s-2006-962453

Liu, B., Li, B., Zhou, D., Wen, X., Wang, Y., Chen, G., et al. (2021). Steroidal saponins with cytotoxic effects from the rhizomes of Asparagus cochinchinensis. *Bioorg. Chem.* 115, 105237. doi:10.1016/j.bioorg.2021.105237

Liu, H., and Dong, Z. (2021). Cancer etiology and prevention principle: "1 + X. Cancer Res. 81 (21), 5377–5395. doi:10.1158/0008-5472.CAN-21-1862

Liu, H., Zheng, Y. F., Li, C. Y., Zheng, Y. Y., Wang, D. Q., Wu, Z., et al. (2015). Discovery of anti-inflammatory ingredients in Chinese herbal formula kouyanqing granule based on relevance analysis between chemical characters and biological effects. *Sci. Rep.* 5, 18080. doi:10.1038/srep18080

López-Tiro, J., Contreras-Contreras, A., Rodríguez-Arellano, M. E., and Costa-Urrutia, P. (2022). Economic burden of severe asthma treatment: A real-life study. *World Allergy Organ. J.* 15 (7), 100662. doi:10.1016/j.waojou.2022.100662

Luo, Z., Xu, W., Zhang, Y., Di, L., and Shan, J. (2020). A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota. *Pharmacol. Res.* 160, 105088. doi:10.1016/j.phrs. 2020.105088

Mao, J. J., Pillai, G. G., Andrade, C. J., Ligibel, J. A., Basu, P., Cohen, L., et al. (2022). Integrative oncology: Addressing the global challenges of cancer prevention and treatment. *Ca. Cancer J. Clin.* 72 (2), 144–164. doi:10.3322/caac.21706

Martemucci, G., Portincasa, P., Di Ciaula, A., Mariano, M., Centonze, V., and D'Alessandro, A. G. (2022). Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. *Mech. Ageing Dev.* 206, 111707. doi:10.1016/j.mad.2022.111707

Martins, J., and S, B. (2018). Phytochemistry and pharmacology of antidepressant medicinal plants: A review. *Biomed. Pharmacother.* 104, 343–365. doi:10.1016/j.biopha.2018.05.044

McInnes, I. B., and Gravallese, E. M. (2021). Immune-mediated inflammatory disease therapeutics: Past, present and future. *Nat. Rev. Immunol.* 21 (10), 680–686. doi:10.1038/s41577-021-00603-1

Milisav, I., Ribarič, S., and Poljsak, B. (2018). Antioxidant vitamins and ageing. Subcell. Biochem. 90, 1-23. doi:10.1007/978-981-13-2835-0_1

Miller, R. L., Grayson, M. H., and Strothman, K. (2021). Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. *J. Allergy Clin. Immunol.* 148 (6), 1430–1441. doi:10. 1016/j.jaci.2021.10.001

Nathan, N. N., Philpott, D. J., and Girardin, S. E. (2021). The intestinal microbiota: From health to disease, and back. *Microbes Infect.* 23 (6-7), 104849. doi:10.1016/j.micinf.2021.104849

Pahwa, P., Singh, T., and Goel, R. K. (2022). Anticonvulsant effect of Asparagus racemosus willd. In a mouse model of catamenial epilepsy. *Neurochem. Res.* 47 (2), 422–433. doi:10.1007/s11064-021-03455-2

Pang, X., Gao, L., Wang, B., Chen, X. J., Zhang, J., Guo, B. L., et al. (2021). New steroidal glycosides from the roots of Asparagus cochinchinensis. *J. Asian Nat. Prod. Res.* 23 (3), 205–216. doi:10.1080/10286020.2021.1873956

Papi, A., Brightling, C., Pedersen, S. E., and Reddel, H. K. (2018). Asthma. Lancet (London, Engl. 391 (10122), 783–800. doi:10.1016/S0140-6736(17)33311-1

Payne, A., Nahashon, S., Taka, E., Adinew, G. M., and Soliman, K. (2022). Epigallocatechin-3-Gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 12 (3), 371. doi:10.3390/biom12030371

Pegiou, E., Mumm, R., Acharya, P., de Vos, R., and Hall, R. D. (2019). Green and white Asparagus (Asparagus officinalis): A source of developmental, chemical and urinary intrigue. *Metabolites* 10 (1), 17. doi:10.3390/metabo10010017

Pillaiyar, T., Manickam, M., and Namasivayam, V. (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. *J. Enzyme Inhib. Med. Chem.* 32 (1), 403–425. doi:10.1080/14756366.2016.1256882

Ren, Y., Elkington, B. G., Henkin, J. M., Sydara, K., Kinghorn, A. D., and Soejarto, D. D. (2021). Bioactive small-molecule constituents of Lao plants. *J. Med. Plant Res.* 15 (12), 540–559. doi:10.5897/jmpr2021.7137

Safriani, N., Zakaria, F. R., Prangdimurti, E., SuwartiVerpoorte, R., and Yuliana, N. D. (2022). Using metabolomics to discover the immunomodulator activity of food plants. *Heliyon* 8 (5), e09507. doi:10.1016/j.heliyon.2022.e09507

Sakuma, K., Ogawa, M., Sugibayashi, K., Yamada, K., and Yamamoto, K. (1999). Relationship between tyrosinase inhibitory action and oxidation-reduction potential of cosmetic whitening ingredients and phenol derivatives. *Arch. Pharm. Res.* 22 (4), 335–339. doi:10.1007/BF02979054

Schoettler, N., and Strek, M. E. (2020). Recent advances in severe asthma: From phenotypes to personalized medicine. *Chest* 157 (3), 516–528. doi:10.1016/j.chest.2019.10.009

Shen, Y., Xu, C. L., Xuan, W. D., Li, H. L., Liu, R. H., Xu, X. K., et al. (2011). A new furostanol saponin from Asparagus cochinchinensis. *Arch. Pharm. Res* 34 (10), 1587–1591. doi:10.1007/s12272-011-1001-7

Sheng, W. (2022a). The complete chloroplast genome of two traditional medical plants: Asparagus cochinchinensis lour. Merr. And Asparagus dauricus fisch. Ex link. *Mitochondrial DNA. B Resour* 7 (5), 725–726. doi:10.1080/23802359.2022.2068976

Sheng, W. (2022b). The entire chloroplast genome sequence of Asparagus cochinchinensis and genetic comparison to Asparagus species. *Open Life Sci* 17 (1), 893–906. doi:10.1515/biol-2022-0098

Shi, J. G., Li, G. Q., Huang, S. Y., Mo, S. Y., Wang, Y., Yang, Y. C., et al. (2004). Furostanol oligoglycosides from Asparagus cochinchinensis. *J. Asian Nat. Prod. Res.* 6 (2), 99–105. doi:10.1080/1028602031000135576

Shi, Z., Zhang, H., and Zhao, X. (2009). Ultrasonic-assisted precolumn derivatization-HPLC determination of acrylamide formed in Radix Asparagi during heating process. *J. Pharm. Biomed. Anal.* 49 (4), 1045–1047. doi:10.1016/ j.jpba.2008.12.019

Siand, G., Kris-Etherton, P., and Boulos, N. M. (2015). Impact of functional foods on prevention of cardiovascular disease and diabetes. *Curr. Cardiol. Rep.* 17 (6), 39. doi:10.1007/s11886-015-0593-9

Sommer, F., Anderson, J. M., Bharti, R., Raes, J., and Rosenstiel, P. (2017). The resilience of the intestinal microbiota influences health and disease. *Nat. Rev. Microbiol.* 15 (10), 630–638. doi:10.1038/nrmicro.2017.58

Sun, Q., Zhu, L., Li, Y., Cui, Y., Jiang, S., Tao, N., et al. (2020). A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. *Carbohydr. Polym.* 247, 116761. doi:10.1016/j.carbpol.2020.116761

Sung, J. E., Choi, J. Y., Kim, J. E., Lee, H. A., Yun, W. B., Park, J. J., et al. (2017a). Hepatotoxicity and nephrotoxicity of saponin-enriched extract of Asparagus cochinchinensis in ICR mice. *Lab. Anim. Res.* 33 (2), 57–67. doi:10.5625/lar. 2017.33.2.57

Sung, J. E., Lee, H. A., Kim, J. E., Go, J., Seo, E. J., Yun, W. B., et al. (2016). Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation. *Lab. Anim. Res.* 32 (1), 34–45. doi:10.5625/lar.2016.32.1.34

Sung, J. E., Lee, H. A., Kim, J. E., Yun, W. B., An, B. S., Yang, S. Y., et al. (2017). Saponin-enriched extract of Asparagus cochinchinensis alleviates airway inflammation and remodeling in ovalbumin-induced asthma model. *Int. J. Mol. Med.* 40 (5), 1365–1376. doi:10.3892/ijmm.2017.3147

Tabatabai, L. S., and Sellmeyer, D. E. (2021). Nutritional supplements and skeletal health. *Curr. Osteoporos. Rep.* 19 (1), 23-33. doi:10.1007/s11914-020-00651-x

Tao, C., Zeng, W., Zhang, Q., Liu, G., Wu, F., Shen, H., et al. (2021). Effects of the prebiotic inulin-type fructans on post-antibiotic reconstitution of the gut microbiome. J. Appl. Microbiol. 130 (3), 634–649. doi:10.1111/jam.14827

Topolska, K., Florkiewicz, A., and Filipiak-Florkiewicz, A. (2021). Functional food-consumer motivations and expectations. *Int. J. Environ. Res. Public Health* 18 (10), 5327. doi:10.3390/ijerph18105327

Vandeputte, D., Falony, G., Vieira-Silva, S., Wang, J., Sailer, M., Theis, S., et al. (2017). Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. *Gut* 66 (11), 1968–1974. doi:10.1136/gutjnl-2016-313271

Wang, G. H., Lin, Y. M., Kuo, J. T., Lin, C. P., Chang, C. F., Hsieh, M. C., et al. (2019). Comparison of biofunctional activity of Asparagus cochinchinensis (Lour.)

Merr. Extract before and after fermentation with Aspergillus oryzae. J. Biosci. Bioeng. 127 (1), 59-65. doi:10.1016/j.jbiosc.2018.06.015

Wang, T., Liu, J., Luo, X., Hu, L., and Lu, H. (2021). Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. *Pharmacol. Ther.* 224, 107824. doi:10.1016/j. pharmthera.2021.107824

Weiying, L., Yuanjiang, D., and Baolian, L. (2006). Treatment of the localized neurodermatitis by plum-blossom needle tapping and with the modified yangxue dingfeng tang--a clinical observation of 47 cases. *J. traditional Chin. Med.* = *Chung i tsa chih ying wen pan* 26 (3), 181–183.

Wong, K. H., Kong, B. L., Siu, T. Y., Wu, H. Y., But, G. W., Shaw, P. C., et al. (2022). Complete chloroplast genomes of asparagus aethiopicus l, a. densiflorus (kunth) jessop 'myers', and a. cochinchinensis (lour.) merr.: comparative and phylogenetic analysis with congenerics. *PloS one* 17 (4), e0266376. doi:10.1371/ journal.pone.0266376

Wuyts, S., Van Beeck, W., Allonsius, C. N., van den Broek, M. F., and Lebeer, S. (2020). Applications of plant-based fermented foods and their microbes. *Curr. Opin. Biotechnol.* 61, 45–52. doi:10.1016/j.copbio.2019.09.023

Xiong, D., Yu, L. X., Yan, X., Guo, C., and Xiong, Y. (2011). Effects of root and stem extracts of Asparagus cochinchinensis on biochemical indicators related to aging in the brain and liver of mice. *Am. J. Chin. Med.* 39 (4), 719–726. doi:10.1142/S0192415X11009159

Xiong, W., Zhao, X., Xu, Q., Wei, G., Zhang, L., Fan, Y., et al. (2022). Qisheng Wan formula ameliorates cognitive impairment of Alzheimer's disease rat via inflammation inhibition and intestinal microbiota regulation. *J. Ethnopharmacol.* 282, 114598. doi:10.1016/j.jep.2021.114598

Yeung, Y. T., Aziz, F., Guerrero-Castilla, A., and Arguelles, S. (2018). Signaling pathways in inflammation and anti-inflammatory therapies. *Curr. Pharm. Des.* 24 (14), 1449–1484. doi:10.2174/1381612824666180327165604

Zhang, H. J., Sydara, K., Tan, G. T., Ma, C., Southavong, B., Soejarto, D. D., et al. (2004). Bioactive constituents from Asparagus cochinchinensis. *J. Nat. Prod.* 67 (2), 194–200. doi:10.1021/np030370b

Zhang, L., He, F., Gao, L., Cong, M., Sun, J., Xu, J., et al. (2021a). Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile. *Int. J. Nanomedicine* 16, 1575–1586. doi:10.2147/IJN.S293067

Zhang, R. S., Liu, Y. Y., Zhu, P. F., Jin, Q., Dai, Z., and Luo, X. D. (2021b). Furostanol saponins from Asparagus cochinchinensis and their cytotoxicity. *Nat. Prod. Bioprospect.* 11 (6), 651–658. doi:10.1007/s13659-021-00321-0

Zhang, W., and Jin, L. H. (2016). Asparagus cochinchinensis extract alleviates metal ion-induced gut injury in drosophila: an in silico analysis of potential active constituents. *Evidence-Based complementary and alternative medicine*. 2016, 7603746, doi:10.1155/2016/7603746

Zhang, X., Qiu, H., Li, C., Cai, P., and Qi, F. (2021c). The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. *Biosci. Trends* 15 (5), 283–298. doi:10.5582/bst.2021.01318

Zhu, G. L., Hao, Q., Li, R. T., and Li, H. Z. (2014). Steroidal saponins from the roots of Asparagus cochinchinensis. *Chin. J. Nat. Med.* 12 (3), 213–217. doi:10.1016/S1875-5364(14)60035-2

Zhu, G. L., Hao, Q., Xing, L., Yang, X. Q., Xie, S. D., Zhao, P., et al. (2021). C21, C22 pregnane glycosides and cytotoxic C27 spriostanol steroids from Asparagus cochinchinesis. *Steroids* 172, 108874. doi:10.1016/j.steroids.2021.108874

Glossary

ACNP Asparagus cochinchinensis neutral polysaccharide ACNVs Asparagus cochinchinensis-derived nanovesicles Ara Arabinose BDNF Brain-derived neurotrophic factor **CAT** Catalase COX-2 Cyclooxygenase-2 CZE Capillary zone electrophoresis DPPH 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl Fru Fructose Gal Galactose GalUA Galacturonic acid Glc Glucose GlcUA Glucuronic acid GPX Glutathione peroxidase Ig E Immunoglobulin E IL-4 Interleukin 4 IL-13 Interleukin 13 IL-1 β Interleukin-1 beta

iNOS Inducible nitric oxide synthase LPS Lipopolysaccharide Man Mannose MDA Malondialdehyde MPO Myeloperoxidase NGF Nerve growth factor NO Nitric oxide NOS Nitric oxide synthase **OVA** Ovalbumin PA Phthalic anhydride ROS Reactive oxygen species Rha Rhamnose SOD Superoxide dismutase SP Substance P TCM Traditional Chinese medicines Tg Transgenic TNF-a Tumor necrosis factor-a TPA 12-O-tetradecanoyl-phorbol-13-acetate TrkB Tropomyosin receptor kinase B Xyl Xylose